61 research outputs found

    Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model

    Full text link
    Cultural transmission models are coming to the fore in explaining increases in the Paleolithic toolkit richness and diversity. During the later Paleolithic, technologies increase not only in terms of diversity but also in their complexity and interdependence. As Mesoudi and O'Brien (2008) have shown, selection broadly favors social learning of information that is hierarchical and structured, and multiple studies have demonstrated that teaching within a social learning environment can increase fitness. We believe that teaching also provides the scaffolding for transmission of more complex cultural traits. Here, we introduce an extension of the Axelrod (1997} model of cultural differentiation in which traits have prerequisite relationships, and where social learning is dependent upon the ordering of those prerequisites. We examine the resulting structure of cultural repertoires as learning environments range from largely unstructured imitation, to structured teaching of necessary prerequisites, and we find that in combination with individual learning and innovation, high probabilities of teaching prerequisites leads to richer cultural repertoires. Our results point to ways in which we can build more comprehensive explanations of the archaeological record of the Paleolithic as well as other cases of technological change.Comment: 24 pages, 7 figures. Submitted to "Learning Strategies and Cultural Evolution during the Paleolithic", edited by Kenichi Aoki and Alex Mesoudi, and presented at the 79th Annual Meeting of the Society for American Archaeology, Austin TX. Revised 5/14/1

    Mineralogical attenuation for metallic remediation in a passive system for mine water treatment

    Get PDF
    Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes. This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands. The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate. Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 μm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study. The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a Ciência e a Tecnologia (FCT

    The spatial structure of lithic landscapes : the late holocene record of east-central Argentina as a case study

    Get PDF
    Fil: Barrientos, Gustavo. División Antropología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Catella, Luciana. División Arqueología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Oliva, Fernando. Centro Estudios Arqueológicos Regionales. Facultad de Humanidades y Artes. Universidad Nacional de Rosario; Argentin

    Identifying Experimental Tool Use Through Confocal Microscopy

    Get PDF
    Characterizing use-wear traces quantitatively is a valid way to improve the capacity of use-wear analysis. This aim has been on specialists’ agenda since the beginning of the discipline. Micropolish quantification is especially important, as this type of trace allows the identification of worked materials. During the last decade, confocal microscopy has been used as a promising approach to address this question. Following previous efforts in plant microwear characterization (Ibáñez et al. Journal of Archaeological Science, 48, 96–103, 2014; Journal of Archaeological Science, 73, 62–81, 2016), here we test the capacity of the method for correctly grouping experimental tools used for working eight types of materials: bone, antler, wood, fresh hide, dry hide, wild cereals, domestic cereals, and reeds. We demonstrate, for the first time, that quantitative texture analysis of use-wear micropolish based on confocal microscopy can consistently identify tools used for working different contact materials. In this way, we are able to move toward using texture analysis as part of the standard functional analysis of prehistoric instruments.This study is part of the projects HAR2016-74999-P, HAR2015-68566-P, and HAR2016-81971-REDT funded by the Spanish Ministerio de Ciencia, Innovación y Universidades.Peer reviewe

    The functional brain networks that underlie Early Stone Age tool manufacture

    Get PDF
    After 800,000 years of making simple Oldowan tools, early humans began manufacturing Acheulian handaxes around 1.75 million years ago. This advance is hypothesized to reflect an evolutionary change in hominin cognition and language abilities. We used a neuroarchaeology approach to investigate this hypothesis, recording brain activity using functional near-infrared spectroscopy as modern human participants learned to make Oldowan and Acheulian stone tools in either a verbal or nonverbal training context. Here we show that Acheulian tool production requires the integration of visual, auditory and sensorimotor information in the middle and superior temporal cortex, the guidance of visual working memory representations in the ventral precentral gyrus, and higher-order action planning via the supplementary motor area, activating a brain network that is also involved in modern piano playing. The right analogue to Broca’s area—which has linked tool manufacture and language in prior work1,2—was only engaged during verbal training. Acheulian toolmaking, therefore, may have more evolutionary ties to playing Mozart than quoting Shakespeare

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    Paleoindians

    No full text
    corecore