671 research outputs found

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks

    Get PDF
    Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects

    Personality of wild male crested macaques (Macaca nigra).

    Get PDF
    Animal personalities, i.e. consistent differences in behavior across time and/or context, have received increased attention of behavioral biologists over the last years. Recent research shows that personalities represent traits on which natural and sexual selection work and which can have substantial fitness consequences. The aim of this study is to establish the personality structure of crested macaque (Macaca nigra) males as foundation for future studies on its adaptive value. We collected behavioral data through focal animal sampling and additionally conducted two sets of playback experiments. Results of a factor analysis on the behavioral data revealed a four factor structure with components we labeled Anxiety, Sociability, Connectedness and Aggressiveness. Results from the experiments revealed an additional and independent Boldness factor but the absence of Neophilia. Overall, this structure resembles other macaque and animal species with the exception of Connectedness, which might be a consequence of the species' tolerant social style. Our results thus not only form the basis for future studies on the adaptive value of personality in crested macaques but also contribute an important data point for investigating the evolution of personality structure from a comparative perspective by refining, for example, which personality factors characterized the last common ancestor of hominids and macaques

    Binding Modes of Peptidomimetics Designed to Inhibit STAT3

    Get PDF
    STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing dimerization of cancer target protein STAT3

    Neurocranial osteology and neuroanatomy of a late Cretaceous Titanosaurian Sauropod from Spain (Ampelosaurus sp.)

    Get PDF
    Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of "Lo Hueco" yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movementsThis is a contribution to the research project CGL2009-12143 (Ministerio de Economía y Competitividad, Madrid), of which FK, who is currently supported by the Ramón y Cajal Program, is Principal Investigator. LMW and RCR acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257, IOS-1050154) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided suppor

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido

    Prevalence of BRCA1 and BRCA2 Jewish mutations in Spanish breast cancer patients

    Get PDF
    We screened the 185delAG and 5382insC (BRCA1) and the 6174delT (BRCA2) mutation in 298 Spanish women with breast cancer. Two women (one with Sephardic ancestors) presented the 185delAG mutation and the same haplotype reported in Ashkenazim with this mutation. This suggests a common origin of the 185delAG in both Sephardic and Ashkenazi populations. © 1999 Cancer Research Campaig

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    A Database of Domain Definitions for Proteins with Complex Interdomain Geometry

    Get PDF
    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP “multi-domain proteins” class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these “alternate” domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution
    corecore