8,263 research outputs found
Ordered groupoids and the holomorph of an inverse semigroup
We present a construction for the holomorph of an inverse semigroup, derived
from the cartesian closed structure of the category of ordered groupoids. We
compare the holomorph with the monoid of mappings that preserve the ternary
heap operation on an inverse semigroup: for groups these two constructions
coincide. We present detailed calculations for semilattices of groups and for
the polycyclic monoids.Comment: 16 page
Three Dimensional Electrical Impedance Tomography
The electrical resistivity of mammalian tissues varies widely and is correlated with physiological
function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a
non-invasive means of imaging the internal conductivity distribution of the human body. But the
computational complexity of EIT has severe practical limitations, and previous work has been restricted to
considering image reconstruction as an essentially two-dimensional problem. This simplification can limit
significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening
Four-nucleon contact interactions from holographic QCD
We calculate the low energy constants of four-nucleon interactions in an
effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to
obtain meson-nucleon interactions and then integrate out massive mesons to
obtain the four-nucleon interactions in 4D. We end up with two low energy
constants at the leading order and seven of them at the next leading order,
which is consistent with the effective chiral Lagrangian. The values of the low
energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page
Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.
The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits
Programming Model to Develop Supercomputer Combinatorial Solvers
© 2017 IEEE. Novel architectures for massively parallel machines offer better scalability and the prospect of achieving linear speedup for sizable problems in many domains. The development of suitable programming models and accompanying software tools for these architectures remains one of the biggest challenges towards exploiting their full potential. We present a multi-layer software abstraction model to develop combinatorial solvers on massively-parallel machines with regular topologies. The model enables different challenges in the design and optimization of combinatorial solvers to be tackled independently (separation of concerns) while permitting problem-specific tuning and cross-layer optimization. In specific, the model decouples the issues of inter-node communication, n ode-level scheduling, problem mapping, mesh-level load balancing and expressing problem logic. We present an implementation of the model and use it to profile a Boolean satisfiability solver on simulated massively-parallel machines with different scales and topologies
Antikaon production in nucleon-nucleon reactions near threshold
The antikaon production cross section from nucleon-nucleon reactions near
threshold is studied in a meson exchange model. We include both pion and kaon
exchange, but neglect the interference between the amplitudes. In case of pion
exchange the antikaon production cross section can be expressed in terms of the
antikaon production cross section from a pion-nucleon interaction, which we
take from the experimental data if available. Otherwise, a -resonance
exchange model is introduced to relate the different reaction cross sections.
In case of kaon exchange the antikaon production cross section is related to
the elastic and cross sections, which are again taken from
experimental measurements. We find that the one-meson exchange model gives a
satisfactory fit to the available data for the cross section
at high energies. We compare our predictions for the cross section near
threshold with an earlier empirical parameterization and that from phase space
models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.
Resource use data by patient report or hospital records: Do they agree?
Background: Economic evaluations alongside clinical trials are becoming increasingly common.
Cost data are often collected through the use of postal questionnaires; however, the accuracy of
this method is uncertain. We compared postal questionnaires with hospital records for collecting
data on physiotherapy service use.
Methods: As part of a randomised trial of orthopaedic medicine compared with orthopaedic
surgery we collected physiotherapy use data on a group of patients from retrospective postal
questionnaires and from hospital records.
Results: 315 patients were referred for physiotherapy. Hospital data on attendances was available
for 30% (n = 96), compared with 48% (n = 150) of patients completing questionnaire data (95% Cl
for difference = 10% to 24%); 19% (n = 59) had data available from both sources. The two methods
produced an intraclass correlation coefficient of 0.54 (95% Cl 0.31 to 0.70). However, the two
methods produced significantly different estimates of resource use with patient self report recalling
a mean of 1.3 extra visits (95% Cl 0.4 to 2.2) compared with hospital records.
Conclusions: Using questionnaires in this study produced data on a greater number of patients
compared with examination of hospital records. However, the two data sources did differ in the
quantity of physiotherapy used and this should be taken into account in any analysi
Molecular Gas in Quasar Hosts
The study of molecular gas in quasar host galaxies addresses a number of interesting questions pertaining to the hosts' ISM, to unified schemes relating quasars and IR galaxies, and to the processes fueling nuclear activity. In this contribution I review observations of molecular gas in quasar hosts from z=0.06 to z=4.7. The Cloverleaf quasar at z=2.5 is featured as a case where there are now enough detected transitions (four in CO, and one each in CI and HCN) to allow detailed modeling of physical conditions in the molecular ISM. We find that the CO-emitting gas is warmer, denser, and less optically thick than that found in typical Galactic molecular clouds. These differences are probably due to the presence of the luminous quasar in the nucleus of the Cloverleaf's host galaxy
- …
