164 research outputs found

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films

    Get PDF
    An increasing interest in bio-hybrid systems and cell-material interactions is evident in the last years. This leads towards the development of new nano-structured devices and the assessment of their biocompatibility. In the present study, the development of free-standing single layer poly(lactic acid) (PLA) ultra-thin films is described, together with the analysis of topography and roughness properties. The biocompatibility of the PLA films has been tested in vitro, by seeding C2C12 skeletal muscle cells, and thus assessing cells shape, density and viability after 24, 48 and 72 h. The results show that free-standing flexible PLA nanofilms represent a good matrix for C2C12 cells adhesion, spreading and proliferation. Early differentiation into myotubes is also allowed. The biocompatibility of the novel ultra-thin films as substrates for cell growth promotes their application in the fields of regenerative medicine, muscle tissue engineering, drug delivery, and-in general-in the field of bio-hybrid devices

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Food composition database development for between country comparisons

    Get PDF
    Nutritional assessment by diet analysis is a two-stepped process consisting of evaluation of food consumption, and conversion of food into nutrient intake by using a food composition database, which lists the mean nutritional values for a given food portion. Most reports in the literature focus on minimizing errors in estimation of food consumption but the selection of a specific food composition table used in nutrient estimation is also a source of errors. We are conducting a large prospective study internationally and need to compare diet, assessed by food frequency questionnaires, in a comparable manner between different countries. We have prepared a multi-country food composition database for nutrient estimation in all the countries participating in our study. The nutrient database is primarily based on the USDA food composition database, modified appropriately with reference to local food composition tables, and supplemented with recipes of locally eaten mixed dishes. By doing so we have ensured that the units of measurement, method of selection of foods for testing, and assays used for nutrient estimation are consistent and as current as possible, and yet have taken into account some local variations. Using this common metric for nutrient assessment will reduce differential errors in nutrient estimation and improve the validity of between-country comparisons

    Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    Get PDF
    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed

    Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    Get PDF
    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(ε-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), α-myosin heavy chain expression (α-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques

    Diagnostic tools in Rhinology EAACI position paper

    Get PDF
    This EAACI Task Force document aims at providing the readers with a comprehensive and complete overview of the currently available tools for diagnosis of nasal and sino-nasal disease. We have tried to logically order the different important issues related to history taking, clinical examination and additional investigative tools for evaluation of the severity of sinonasal disease into a consensus document. A panel of European experts in the field of Rhinology has contributed to this consensus document on Diagnostic Tools in Rhinology

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA
    corecore