1,416 research outputs found
Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy
Chloroplast microsatellites have been widely used in population genetic
studies of conifers in recent years. However, their haplotype configurations
suggest that they could have high levels of homoplasy, thus limiting the power
of these molecular markers. A coalescent-based computer simulation was used to
explore the influence of homoplasy on measures of genetic diversity based on
chloroplast microsatellites. The conditions of the simulation were defined to
fit isolated populations originating from the colonization of one single
haplotype into an area left available after a glacial retreat. Simulated data
were compared with empirical data available from the literature for a species
of Pinus that has expanded north after the Last Glacial Maximum. In the
evaluation of genetic diversity, homoplasy was found to have little influence
on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance
estimates (D2sh) were much more affected. The effect of the number of
chloroplast microsatellite loci for evaluation of genetic diversity is also
discussed
Local Thermometry of Neutral Modes on the Quantum Hall Edge
A system of electrons in two dimensions and strong magnetic fields can be
tuned to create a gapped 2D system with one dimensional channels along the
edge. Interactions among these edge modes can lead to independent transport of
charge and heat, even in opposite directions. Measuring the chirality and
transport properties of these charge and heat modes can reveal otherwise hidden
structure in the edge. Here, we heat the outer edge of such a quantum Hall
system using a quantum point contact. By placing quantum dots upstream and
downstream along the edge of the heater, we can measure both the chemical
potential and temperature of that edge to study charge and heat transport,
respectively. We find that charge is transported exclusively downstream, but
heat can be transported upstream when the edge has additional structure related
to fractional quantum Hall physics.Comment: 24 pages, 18 figure
Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene
The quantum-Hall-effect (QHE) occurs in topologically-ordered states of
two-dimensional (2d) electron-systems in which an insulating bulk-state
coexists with protected 1d conducting edge-states. Owing to a unique
topologically imposed edge-bulk correspondence these edge-states are endowed
with universal properties such as fractionally-charged quasiparticles and
interference-patterns, which make them indispensable components for QH-based
quantum-computation and other applications. The precise edge-bulk
correspondence, conjectured theoretically in the limit of sharp edges, is
difficult to realize in conventional semiconductor-based electron systems where
soft boundaries lead to edge-state reconstruction. Using scanning-tunneling
microscopy and spectroscopy to follow the spatial evolution of bulk
Landau-levels towards a zigzag edge of graphene supported above a graphite
substrate we demonstrate that in this system it is possible to realize
atomically sharp edges with no edge-state reconstruction. Our results single
out graphene as a system where the edge-state structure can be controlled and
the universal properties directly probed.Comment: 16 pages, 4 figure
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
Non-Equilibrium Edge Channel Spectroscopy in the Integer Quantum Hall Regime
Heat transport has large potentialities to unveil new physics in mesoscopic
systems. A striking illustration is the integer quantum Hall regime, where the
robustness of Hall currents limits information accessible from charge
transport. Consequently, the gapless edge excitations are incompletely
understood. The effective edge states theory describes them as prototypal
one-dimensional chiral fermions - a simple picture that explains a large body
of observations and calls for quantum information experiments with quantum
point contacts in the role of beam splitters. However, it is in ostensible
disagreement with the prevailing theoretical framework that predicts, in most
situations, additional gapless edge modes. Here, we present a setup which gives
access to the energy distribution, and consequently to the energy current, in
an edge channel brought out-of-equilibrium. This provides a stringent test of
whether the additional states capture part of the injected energy. Our results
show it is not the case and thereby demonstrate regarding energy transport, the
quantum optics analogy of quantum point contacts and beam splitters. Beyond the
quantum Hall regime, this novel spectroscopy technique opens a new window for
heat transport and out-of-equilibrium experiments.Comment: 13 pages including supplementary information, Nature Physics in prin
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Recommended from our members
Modifiable predictors of depression following childhood maltreatment: a systematic review and meta-analysis
Although maltreatment experiences in childhood increase the risk for depression, not all maltreated children become depressed. This review aims to systematically examine the existing literature to identify modifiable factors that increase vulnerability to, or act as a buffer against, depression, and could therefore inform the development of targeted interventions. Thirteen databases (including Medline, PsychINFO, SCOPUS) were searched (between 1984 and 2014) for prospective, longitudinal studies published in English that included at least 300 participants and assessed associations between childhood maltreatment and later depression. The study quality was assessed using an adapted Newcastle-Ottawa Scale checklist. Meta-analyses (random effects models) were performed on combined data to estimate the effect size of the association between maltreatment and depression. Meta-regressions were used to explore effects of study size and quality. We identified 22 eligible articles (N=12 210 participants), of which 6 examined potential modifiable predictors of depression following maltreatment. No more than two studies examined the same modifiable predictor; therefore, it was not possible to examine combined effects of modifiable predictors with meta-regression. It is thus difficult to draw firm conclusions from this study, but initial findings indicate that interpersonal relationships, cognitive vulnerabilities and behavioral difficulties may be modifiable predictors of depression following maltreatment. There is a lack of well-designed, prospective studies on modifiable predictors of depression following maltreatment. A small amount of initial research suggests that modifiable predictors of depression may be specific to maltreatment subtypes and gender. Corroboration and further investigation of causal mechanisms is required to identify novel targets for intervention, and to inform guidelines for the effective treatment of maltreated children
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
- …
