7,152 research outputs found
A generic approach for the development of short-term predictions of Escherichia coli and biotoxins in shellfish
Microbiological contamination or elevated marine biotoxin concentrations within shellfish can result in temporary closure of shellfish aquaculture harvesting, leading to financial loss for the aquaculture business and a potential reduction in consumer confidence in shellfish products. We present a method for predicting short-term variations in shellfish concentrations of Escherichia coli and biotoxin (okadaic acid and its derivates dinophysistoxins and pectenotoxins). The approach was evaluated for 2 contrasting shellfish harvesting areas. Through a meta-data analysis and using environmental data in situ, satellite observations and meteorological nowcasts and forecasts), key environmental drivers were identified and used to develop models to predict E. coli and biotoxin concentrations within shellfish. Models were trained and evaluated using independent datasets, and the best models were identified based on the model exhibiting the lowest root mean square error. The best biotoxin model was able to provide 1 wk forecasts with an accuracy of 86%, a 0% false positive rate and a 0% false discovery rate (n = 78 observations) when used to predict the closure of shellfish beds due to biotoxin. The best E. coli models were used to predict the European hygiene classification of the shellfish beds to an accuracy of 99% (n = 107 observations) and 98% (n = 63 observations) for a bay (St Austell Bay) and an estuary (Turnaware Bar), respectively. This generic approach enables high accuracy short-term farm-specific forecasts, based on readily accessible environmental data and observations
Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene
The quantum-Hall-effect (QHE) occurs in topologically-ordered states of
two-dimensional (2d) electron-systems in which an insulating bulk-state
coexists with protected 1d conducting edge-states. Owing to a unique
topologically imposed edge-bulk correspondence these edge-states are endowed
with universal properties such as fractionally-charged quasiparticles and
interference-patterns, which make them indispensable components for QH-based
quantum-computation and other applications. The precise edge-bulk
correspondence, conjectured theoretically in the limit of sharp edges, is
difficult to realize in conventional semiconductor-based electron systems where
soft boundaries lead to edge-state reconstruction. Using scanning-tunneling
microscopy and spectroscopy to follow the spatial evolution of bulk
Landau-levels towards a zigzag edge of graphene supported above a graphite
substrate we demonstrate that in this system it is possible to realize
atomically sharp edges with no edge-state reconstruction. Our results single
out graphene as a system where the edge-state structure can be controlled and
the universal properties directly probed.Comment: 16 pages, 4 figure
American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on Optimal Analgesia within an Enhanced Recovery Pathway for Colorectal Surgery: Part 2-From PACU to the Transition Home.
BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia", which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multidisciplinary, international group of experts and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery within an ERP. The goal was twofold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus on care in the post-anesthesia care unit, general care ward, and transition to home after discharge. The preoperative and operative consensus statement for analgesia was covered in Part 1 of this paper. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of "optimal analgesia" as set forth in this document
Sequential Effects in Judgements of Attractiveness: The Influences of Face Race and Sex
In perceptual decision-making, a person’s response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Computers from plants we never made. Speculations
We discuss possible designs and prototypes of computing systems that could be
based on morphological development of roots, interaction of roots, and analog
electrical computation with plants, and plant-derived electronic components. In
morphological plant processors data are represented by initial configuration of
roots and configurations of sources of attractants and repellents; results of
computation are represented by topology of the roots' network. Computation is
implemented by the roots following gradients of attractants and repellents, as
well as interacting with each other. Problems solvable by plant roots, in
principle, include shortest-path, minimum spanning tree, Voronoi diagram,
-shapes, convex subdivision of concave polygons. Electrical properties
of plants can be modified by loading the plants with functional nanoparticles
or coating parts of plants of conductive polymers. Thus, we are in position to
make living variable resistors, capacitors, operational amplifiers,
multipliers, potentiometers and fixed-function generators. The electrically
modified plants can implement summation, integration with respect to time,
inversion, multiplication, exponentiation, logarithm, division. Mathematical
and engineering problems to be solved can be represented in plant root networks
of resistive or reaction elements. Developments in plant-based computing
architectures will trigger emergence of a unique community of biologists,
electronic engineering and computer scientists working together to produce
living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing
inspired by physics, chemistry and biology. Essays presented to Julian Miller
on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew
Adamatzky (Springer, 2017
Levels and Correlates of Non-Adherence to WHO Recommended Inter-Birth Intervals in Rufiji, Tanzania.
Poorly spaced pregnancies have been documented worldwide to result in adverse maternal and child health outcomes. The World Health Organization (WHO) recommends a minimum inter-birth interval of 33 months between two consecutive live births in order to reduce the risk of adverse maternal and child health outcomes. However, birth spacing practices in many developing countries, including Tanzania, remain scantly addressed. METHODS: Longitudinal data collected in the Rufiji Health and Demographic Surveillance System (HDSS) from January 1999 to December 2010 were analyzed to investigate birth spacing practices among women of childbearing age. The outcome variable, non-adherence to the minimum inter-birth interval, constituted all inter-birth intervals <33 months long. Inter-birth intervals >=33 months long were considered to be adherent to the recommendation. Chi-Square was used as a test of association between non-adherence and each of the explanatory variables. Factors affecting non-adherence were identified using a multilevel logistic model. Data analysis was conducted using STATA (11) statistical software. RESULTS: A total of 15,373 inter-birth intervals were recorded from 8,980 women aged 15--49 years in Rufiji district over the follow-up period of 11 years. The median inter-birth interval was 33.4 months. Of the 15,373 inter-birth intervals, 48.4% were below the WHO recommended minimum length of 33 months between two live births. Non-adherence was associated with younger maternal age, low maternal education, multiple births of the preceding pregnancy, non-health facility delivery of the preceding birth, being an in-migrant resident, multi-parity and being married. CONCLUSION: Generally, one in every two inter-birth intervals among 15--49 year-old women in Rufiji district is poorly spaced, with significant variations by socio-demographic and behavioral characteristics of mothers and newborns. Maternal, newborn and child health services should be improved with a special emphasis on community- and health facility-based optimum birth spacing education in order to enhance health outcomes of mothers and their babies, especially in rural settings
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: part 1-from the preoperative period to PACU
BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia," which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multi-disciplinary, international group of clinicians, and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery ERP. The goal was two-fold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus from the preoperative period to the post-anesthesia care unit. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of optimal analgesia as set forth in this document
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
- …
