176 research outputs found
Compact Stars - How Exotic Can They Be?
Strong interaction physics under extreme conditions of high temperature
and/or density is of central interest in modern nuclear physics for
experimentalists and theorists alike. In order to investigate such systems,
model approaches that include hadrons and quarks in a unified approach, will be
discussed. Special attention will be given to high-density matter as it occurs
in neutron stars. Given the current observational limits for neutron star
masses, the properties of hyperonic and hybrid stars will be determined. In
this context especially the question of the extent, to which exotic particles
like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held
in Boppard (Germany), May 201
Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State
We propose a dark-matter (DM) admixed density-dependent equation of state
where the fermionic DM interacts with the nucleons via Higgs portal. Presence
of DM can hardly influence the particle distribution inside neutron star (NS)
but can significantly affect the structure as well as equation of state (EOS)
of NS. Introduction of DM inside NS softens the equation of state. We explored
the effect of variation of DM mass and DM Fermi momentum on the NS EOS.
Moreover, DM-Higgs coupling is constrained using dark matter direct detection
experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and
DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi
momentum. We have done our analysis by considering different NS masses. Also DM
mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling.
We calculated the variations of luminosity and temperature of NS with time for
all EOSs considered in our work and then compared our calculations with the
observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E
1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR
B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS
agrees well with the pulsar data for lighter and medium mass NSs but cooling is
very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all
considered NS masses, all chosen DM masses and Fermi momenta agree well with
the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR
B2334+61. Cooling becomes faster as compared to normal NSs in case of
increasing DM mass and Fermi momenta. It is infered from the calculations that
if low mass super cold NSs are observed in future that may support the fact
that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European
Physical Journal
IPCC reasons for concern regarding climate change risks
The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Quantifying Microstructural Evolution in Moving Magma
Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior
Influence of eruptive style on volcanic gas emission chemistry and temperature
Gas bubbles form as magmas ascend in the crust and exsolve volatiles. These bubbles evolve chemically and physically as
magma decompression and crystallization proceed. It is generally assumed that the gas remains in thermal equilibrium with
the melt but the relationship between gas and melt redox state is debated. Here, using absorption spectroscopy, we report the
composition of gases emitted from the lava lake of Kīlauea Volcano, Hawaii, and calculate equilibrium conditions for the gas
emissions. Our observations span a transition between more and less vigorous-degassing regimes. They reveal a temperature
range of up to 250 °C, and progressive oxidation of the gas, relative to solid rock buffers, with decreasing gas temperature.
We suggest that these phenomena are the result of changing gas bubble size. We find that even for more viscous magmas,
fast-rising bubbles can cool adiabatically, and lose the redox signature of their associated melts. This process can result in
rapid changes in the abundances of redox-sensitive gas species. Gas composition is monitored at many volcanoes in support
of hazard assessment but time averaging of observations can mask such variability arising from the dynamics of degassing. In
addition, the observed redox decoupling between gas and melt calls for caution in using lava chemistry to infer the composition
of associated volcanic gases
Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-di-AMP
Cyclic diguanosine monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP) are recently identified signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA), which is an ortholog of Bacillus subtilis DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-performance liquid chromatography (HPLC), mass spectrometry (MS) and thin layer chromatography (TLC). Our results showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA, c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA's enzymatically active conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg2+, Mn2+ or Co2+. DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for interacting with ATP, and mutation of this motif to AAA completely abolished DacA's diadenylate cyclase activity. These results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the biological function of this enzyme in M. tuberculosis
Inhaled corticosteroids and long-acting beta-agonists in adult asthma: a winning combination in all?
In the recent years, considerable insight has been gained in to the optimal management of adult asthma. Most adult patients with asthma have mild intermittent and persistent disease, and it is acknowledged that many patients do not reach full control of all symptoms and signs of asthma. Those with mild persistent asthma are usually not well controlled without inhaled corticosteroids (ICS). Studies have provided firm evidence that these patients can be well controlled when receiving ICS, especially when disease is of recent onset. This treatment should be given on a daily basis at a low dose and when providing a good response should be maintained to prevent severe exacerbations and disease deterioration. Intermittent ICS treatment at the time of an exacerbation has also been suggested as a strategy for mild persistent asthma, but it is less effective than low-dose regular treatment for most outcomes. Adding a long-acting beta-agonist (LABA) to ICS appears to be unnecessary in most of these patients for optimising control of their asthma. Patients with moderate persistent asthma can be regarded as those who are not ideally controlled on low-dose ICS alone. The combination of an ICS and LABA is preferred in these patients, irrespective of the brand of medicine, and this combination is better than doubling or even quadrupling the dose of ICS to achieve better asthma control and reduce exacerbation risks. An ICS/LABA combination in a single inhaler represents a safe, effective and convenient treatment option for the management of patients with asthma unstable on inhaled steroids alone. Ideally, once asthma is under full control, the dose of inhaled steroids should be reduced, which is possible in many patients. The duration of treatment before initiating this dose reduction has, however, not been fully established. One of the combinations available to treat asthma (budesonide and formoterol) has also been assessed as both maintenance and rescue therapy with a further reduction in the risk for a severe exacerbation. Clinical effectiveness in the real world now has to be established, since this approach likely improves compliance with regular maintenance therapy
The use of race, ethnicity and ancestry in human genetic research
Post-Human Genome Project progress has enabled a new wave of population genetic research, and intensified controversy over the use of race/ethnicity in this work. At the same time, the development of methods for inferring genetic ancestry offers more empirical means of assigning group labels. Here, we provide a systematic analysis of the use of race/ethnicity and ancestry in current genetic research. We base our analysis on key published recommendations for the use and reporting of race/ethnicity which advise that researchers: explain why the terms/categories were used and how they were measured, carefully define them, and apply them consistently. We studied 170 population genetic research articles from high impact journals, published 2008–2009. A comparative perspective was obtained by aligning study metrics with similar research from articles published 2001–2004. Our analysis indicates a marked improvement in compliance with some of the recommendations/guidelines for the use of race/ethnicity over time, while showing that important shortfalls still remain: no article using ‘race’, ‘ethnicity’ or ‘ancestry’ defined or discussed the meaning of these concepts in context; a third of articles still do not provide a rationale for their use, with those using ‘ancestry’ being the least likely to do so. Further, no article discussed potential socio-ethical implications of the reported research. As such, there remains a clear imperative for highlighting the importance of consistent and comprehensive reporting on human populations to the genetics/genomics community globally, to generate explicit guidelines for the uses of ancestry and genetic ancestry, and importantly, to ensure that guidelines are followed
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …
