79 research outputs found
A framework for mapping, visualisation and automatic model creation of signal-transduction networks
An intuitive formalism for reconstructing cellular networks from empirical data is presented, and used to build a comprehensive yeast MAP kinase network. The accompanying rxncon software tool can convert networks to a range of standard graphical formats and mathematical models
Biogenesis and Dynamics of Mitochondria during the Cell Cycle: Significance of 3′UTRs
Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany cellular mitosis, and illustrate the following key points of the biogenesis of mitochondria during progression of liver cells through the cycle: (i) the replication of nuclear and mitochondrial genomes is synchronized during cellular proliferation, (ii) the accretion of OXPHOS proteins is asynchronously regulated during proliferation being the synthesis of β-F1-ATPase and Hsp60 carried out also at G2/M and, (iii) the biosynthesis of cardiolipin is achieved during the S phase, although full development of the mitochondrial membrane potential (ΔΨm) is attained at G2/M. Furthermore, we demonstrate using reporter constructs that the mechanism regulating the accretion of β-F1-ATPase during cellular proliferation is controlled at the level of mRNA translation by the 3′UTR of the transcript. The 3′UTR-driven synthesis of the protein at G2/M is essential for conferring to the daughter cells the original phenotype of the parental cell. Our findings suggest that alterations on this process may promote deregulated β-F1-ATPase expression in human cancer
PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2+ breast cancer cells by inducing Bim
Targeting cell cycle and hormone receptor pathways in cancer
The cyclin/cyclin-dependent kinase (CDK)/retinoblastoma (RB)-axis is a critical modulator of cell cycle entry and is aberrant in many human cancers. New nodes of therapeutic intervention are needed that can delay or combat the onset of malignancies. The antitumor properties and mechanistic functions of PD-0332991 (PD; a potent and selective CDK4/6 inhibitor) were investigated using human prostate cancer (PCa) models and primary tumors. PD significantly impaired the capacity of PCa cells to proliferate by promoting a robust G1-arrest. Accordingly, key regulators of the G1-S cell cycle transition were modulated including G1 cyclins D, E and A. Subsequent investigation demonstrated the ability of PD to function in the presence of existing hormone-based regimens and to cooperate with ionizing radiation to further suppress cellular growth. Importantly, it was determined that PD is a critical mediator of PD action. The anti-proliferative impact of CDK4/6 inhibition was revealed through reduced proliferation and delayed growth using PCa cell xenografts. Finally, first-in-field effects of PD on proliferation were observed in primary human prostatectomy tumor tissue explants. This study shows that selective CDK4/6 inhibition, using PD either as a single-agent or in combination, hinders key proliferative pathways necessary for disease progression and that RB status is a critical prognostic determinant for therapeutic efficacy. Combined, these pre-clinical findings identify selective targeting of CDK4/6 as a bona fide therapeutic target in both early stage and advanced PCa and underscore the benefit of personalized medicine to enhance treatment response.C E S Comstock, M A Augello, J F Goodwin, R de Leeuw, M J Schiewer, W F Ostrander Jr, R A Burkhart, A K McClendon, P A McCue, E J Trabulsi, C D Lallas, L G Gomella, M M Centenera, J R Brody, L M Butler, W D Tilley and K E Knudse
Analysis of artificially oxidized cardiolipins and monolyso‐cardiolipins via liquid chromatography/high‐resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation
Changes in mitochondrial surface charge mediate recruitment of signaling molecules during apoptosis
Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS
- …
