880 research outputs found

    The Compelling Case for Indentation as a Functional Exploratory and Characterization Tool

    Get PDF
    The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a pre-crack through a 'standard' machined specimen, are also outlined. Misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/jace.1372

    Colonist, 1889-02-15

    Get PDF
    The Colonist began on 6 March 1886, changing its name to The Newfoundland Colonist after 18 July 1891. Having printed local and international news Monday to Saturday for six years, the paper came to an abrupt end when its offices were destroyed in The Great Fire of 8 July 1892.Title variations recorded in Alternative Title, as needed

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Sequential Effects in Judgements of Attractiveness: The Influences of Face Race and Sex

    Get PDF
    In perceptual decision-making, a person’s response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making

    Novel technologies and emerging biomarkers for personalized cancer immunotherapy

    Get PDF
    The culmination of over a century's work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery

    Aidnogenesis via Leptogenesis and Dark Sphalerons

    Get PDF
    We discuss aidnogenesis, the generation of a dark matter asymmetry via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form "dark baryons" through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be approximately 6 GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.Comment: Minor changes, discussion of present constraints expanded. 16 pages, 2 eps figures, REVTeX

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Ab initio alpha-alpha scattering

    Get PDF
    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.Comment: 6 pages, 6 figure
    corecore