21 research outputs found

    Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential

    Get PDF
    Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency—but only in the presence of H435–IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435–IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435–IgG3 to be a candidate for monoclonal antibody therapies

    Treatment of active lupus nephritis with the novel immunosuppressant 15-deoxyspergualin: an open-label dose escalation study

    Get PDF
    Introduction: As the immunosuppressive potency of 15-deoxyspergualin (DSG) has been shown in the therapy of renal transplant rejection and Wegener's granulomatosis, the intention of this study was to evaluate the safety of DSG in the therapy of lupus nephritis (LN). Methods: Patients with histologically proven active LN after prior treatment with at least one immunosuppressant were treated with 0.5 mg/kg normal body weight/day DSG, injected subcutaneously for 14 days, followed by a break of one week. These cycles were repeated to a maximum of 9 times. Doses of oral corticosteroids were gradually reduced to 7.5 mg/day or lower by cycle 4. Response was measured according to a predefined decision pattern. The dose of DSG was adjusted depending on the efficacy and side effects. Results: 21 patients were included in this phase-I/II study. After the first DSG injection, one patient was excluded from the study due to renal failure. 5 patients dropped out due to adverse events or serious adverse events including fever, leukopenia, oral candidiasis, herpes zoster or pneumonia. 11/20 patients achieved partial (4) or complete responses (7), 8 were judged as treatment failures and one patient was not assessable. 12 patients completed all 9 cycles; in those patients, proteinuria decreased from 5.88g/day to 3.37g/day (P = 0.028), Selena-SLEDAI decreased from 17.6 to 11.7. In 13/20 patients, proteinuria decreased by at least 50%; in 7 patients to less than 1g/day. Conclusions: Although the number of patients was small, we could demonstrate that DSG provides a tolerably safe treatment for LN. The improvement in proteinuria encourages larger controlled trials

    Neonatal Fc Receptor: From Immunity to Therapeutics

    Get PDF
    The neonatal Fc receptor (FcRn), also known as the Brambell receptor and encoded by Fcgrt, is a MHC class I like molecule that functions to protect IgG and albumin from catabolism, mediates transport of IgG across epithelial cells, and is involved in antigen presentation by professional antigen presenting cells. Its function is evident in early life in the transport of IgG from mother to fetus and neonate for passive immunity and later in the development of adaptive immunity and other functions throughout life. The unique ability of this receptor to prolong the half-life of IgG and albumin has guided engineering of novel therapeutics. Here, we aim to summarize the basic understanding of FcRn biology, its functions in various organs, and the therapeutic design of antibody- and albumin-based therapeutics in light of their interactions with FcRn

    In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor.

    No full text
    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10.Open-Access Publikationsfunds 2016peerReviewe
    corecore