8 research outputs found
Tandem mass spectrometry data quality assessment by self-convolution
<p>Abstract</p> <p>Background</p> <p>Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on <it>de novo </it>sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified.</p> <p>Results</p> <p>The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores.</p> <p>Conclusion</p> <p>We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well and could potentially be used as a pre-processing for all mass spectrometry based protein identification tools.</p
Orders of Magnitude Extension of the Effective Dynamic Range of TDC-Based TOFMS Data Through Maximum Likelihood Estimation
In a recent article, we derived a probability distribution that was shown to closely approximate that of the data produced by liquid chromatography time-of-flight mass spectrometry (LC/TOFMS) instruments employing time-to-digital converters (TDCs) as part of their detection system. The approach of formulating detailed and highly accurate mathematical models of LC/MS data via probability distributions that are parameterized by quantities of analytical interest does not appear to have been fully explored before. However, we believe it could lead to a statistically rigorous framework for addressing many of the data analytical problems that arise in LC/MS studies. In this article, we present new procedures for correcting for TDC saturation using such an approach and demonstrate that there is potential for significant improvements in the effective dynamic range of TDC-based mass spectrometers, which could make them much more competitive with the alternative analog-to-digital converters (ADCs). The degree of improvement depends on our ability to generate mass and chromatographic peaks that conform to known mathematical functions and our ability to accurately describe the state of the detector dead time—tasks that may be best addressed through engineering efforts. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-014-0961-5) contains supplementary material, which is available to authorized users
Coupled Space- and Velocity-Focusing in Time-of-Flight Mass Spectrometry—a Comprehensive Theoretical Investigation
Application of the effective formula of growth functional to quantitative description of growth of plant cells
An effective formula describing expansive plant growth is derived from the modified Lockhart/Ortega-type equation. Its applicability is demonstrated on selected experimental data extracted from available literature. Quantitative information about the “diffusion rate” (k 2) of the growth factors is obtained for two different model species in plant science: Arabidopsis thaliana L. belongs to the dicots and Zea mays L. belongs to the monocots. It is shown that the value of the diffusion rate may be useful in comparing different datasets and serve as a measure of reproducibility of standard measurements. Analysis of the formula and fits allows to identify and suggest a set of criteria for reporting future experiments, which would improve comparability and reproducibility of the results
