2,025 research outputs found
Evolution favors protein mutational robustness in sufficiently large populations
BACKGROUND: An important question is whether evolution favors properties such
as mutational robustness or evolvability that do not directly benefit any
individual, but can influence the course of future evolution. Functionally
similar proteins can differ substantially in their robustness to mutations and
capacity to evolve new functions, but it has remained unclear whether any of
these differences might be due to evolutionary selection for these properties.
RESULTS: Here we use laboratory experiments to demonstrate that evolution
favors protein mutational robustness if the evolving population is sufficiently
large. We neutrally evolve cytochrome P450 proteins under identical selection
pressures and mutation rates in populations of different sizes, and show that
proteins from the larger and thus more polymorphic population tend towards
higher mutational robustness. Proteins from the larger population also evolve
greater stability, a biophysical property that is known to enhance both
mutational robustness and evolvability. The excess mutational robustness and
stability is well described by existing mathematical theories, and can be
quantitatively related to the way that the proteins occupy their neutral
network.
CONCLUSIONS: Our work is the first experimental demonstration of the general
tendency of evolution to favor mutational robustness and protein stability in
highly polymorphic populations. We suggest that this phenomenon may contribute
to the mutational robustness and evolvability of viruses and bacteria that
exist in large populations
Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration
Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core
The flare of radiation from the tidal disruption and accretion of a star can
be used as a marker for supermassive black holes that otherwise lie dormant and
undetected in the centres of distant galaxies. Previous candidate flares have
had declining light curves in good agreement with expectations, but with poor
constraints on the time of disruption and the type of star disrupted, because
the rising emission was not observed. Recently, two `relativistic' candidate
tidal disruption events were discovered, each of whose extreme X-ray luminosity
and synchrotron radio emission were interpreted as the onset of emission from a
relativistic jet. Here we report the discovery of a luminous
ultraviolet-optical flare from the nuclear region of an inactive galaxy at a
redshift of 0.1696. The observed continuum is cooler than expected for a simple
accreting debris disk, but the well-sampled rise and decline of its light curve
follows the predicted mass accretion rate, and can be modelled to determine the
time of disruption to an accuracy of two days. The black hole has a mass of
about 2 million solar masses, modulo a factor dependent on the mass and radius
of the star disrupted. On the basis of the spectroscopic signature of ionized
helium from the unbound debris, we determine that the disrupted star was a
helium-rich stellar core.Comment: To appear in Nature on May 10, 201
Synthesis and Oligonucleotide Incorporation of Fluorescent Cytosine Analogue tC: a Promising Nucleic Acid Probe
The tricyclic cytosine, tC, is a fluorescent base analogue with excellent properties for investigating intrinsic characteristics of nucleic acid as well as interactions between nucleic acids and other molecules. Its unique fluorescence properties and insignificant influence on overall structure and dynamics of nucleic acid after incorporation makes tC particularly interesting in fluorescence resonance energy transfer and anisotropy measurements. We here describe a straightforward synthesis of the standard monomer form of tC for DNA solid-phase synthesis, the tC phosphoramidite, and its subsequent incorporation into oligonucleotides. The total synthesis of the tC phosphoramidite takes approximately 8 days and its incorporation and the subsequent oligonucleotide purification an additional day
In vivo gene transfer to the brain cortex using a single injection of HSV-1 vector into the medial septum
This study shows that an ICP4-replication-deficient herpes simplex virus containing
the Moloney murine leukaemia virus LTR fused with the coding sequence
for the beta-galactosidase gene can be used as a very effective vector for
delivering the beta-galactosidase reporter gene into the rat brain septum. F344
rats received bilateral stereotaxic injections into the nucleus of the diagonal
band and into the medial septum. The X-gal stain was used to detect the
activity of the expressed beta-galactosidase enzyme. The delivered reporter gene
was expressed successfully not only in the neuronal cells of the injected areas
but also in cells that project to the injection area such as cortex cells about
6 mm away from the injection sites. Expression was visible at 1, 3 and 9 weeks
following injection. We conclude that this vector can effectively deliver genes
into different regions of the mature mammalian brain and also to areas distant
from the injection site
Hypernovae and Other Black-Hole-Forming Supernovae
During the last few years, a number of exceptional core-collapse supernovae
(SNe) have been discovered. Their kinetic energy of the explosions are larger
by more than an order of magnitude than the typical values for this type of
SNe, so that these SNe have been called `Hypernovae'. We first describe how the
basic properties of hypernovae can be derived from observations and modeling.
These hypernovae seem to come from rather massive stars, thus forming black
holes. On the other hand, there are some examples of massive SNe with only a
small kinetic energy. We suggest that stars with non-rotating black holes are
likely to collapse "quietly" ejecting a small amount of heavy elements (Faint
supernovae). In contrast, stars with rotating black holes are likely to give
rise to very energetic supernovae (Hypernovae). We present distinct
nucleosynthesis features of these two types of "black-hole-forming" supernovae.
Hypernova nucleosynthesis is characterized by larger abundance ratios
(Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is
characterized by a large amount of fall-back. We show that the abundance
pattern of the most Fe deficient star, HE0107-5240, and other extremely
metal-poor carbon-rich stars are in good accord with those of
black-hole-forming supernovae, but not pair-instability supernovae. This
suggests that black-hole-forming supernovae made important contributions to the
early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and
Space Science; Kluwer) ed. C. L. Fryer (2003
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI
Genome-wide association studies (GWAS) have demonstrated a significant polygenic contribution to bipolar disorder (BD) where disease risk is determined by the summation of many alleles of small individual magnitude. Modelling polygenic risk scores may be a powerful way of identifying disrupted brain regions whose genetic architecture is related to that of BD. We determined the extent to which common genetic variation underlying risk to BD affected neural activation during an executive processing/language task in individuals at familial risk of BD and healthy controls. Polygenic risk scores were calculated for each individual based on GWAS data from the Psychiatric GWAS Consortium Bipolar Disorder Working Group (PGC-BD) of over 16 000 subjects. The familial group had a significantly higher polygene score than the control group (P=0.04). There were no significant group by polygene interaction effects in terms of association with brain activation. However, we did find that an increasing polygenic risk allele load for BD was associated with increased activation in limbic regions previously implicated in BD, including the anterior cingulate cortex and amygdala, across both groups. The findings suggest that this novel polygenic approach to examine brain-imaging data may be a useful means of identifying genetically mediated traits mechanistically linked to the aetiology of BD
- …
