1,793 research outputs found
The development and sea trials of a subsea holographic camera for large volume in-situ recording of marine organisms
We describe the development, construction and sea testing of an underwater holographic camera (HoloCam) for in situ recording of marine organisms and particles in large volumes of sea water. HoloCam comprises a laser, power supply,
holographic recording optics and plate holders, a water-tight housing and a support frame. Added to this are control electronics such that the entire camera is remotely operable and controllable from ship or dock-side. Uniquely the camera can simultaneously record both in-line and off-axis holograms using a pulsed frequency doubled Nd-YAG laser. In-line holography is capable of producing images of organisms with a resolution of better than 10 Pm (at concentrations up to a few thousand per cubic centimetre at the smallest sizes). Off-axis holograms of aquatic systems of up to 50,000 cm3 volume, have been recorded. Following initial laboratory testing, the holo-camera was evaluated in an observation tank and ultimately was tested in Loch Etive, Scotland. In-line and off-axis holograms were recorded to a depth of 100 m. We will present results on the test dives and evaluation of the camera performance
HoloCam: A subsea holographic camera for recording marine organisms and particles
The HoloCam system is a major component of a multi-national multi-discipline project known as HoloMar (funded by the European Commission under the MAST III initiative). The project is concerned with the development of pulsed laser holography to analyse and monitor the populations of living organisms and inanimate particles within the world's oceans. We describe here the development, construction and evaluation of a prototype underwater camera, the purpose of which is to record marine organisms and particles, in-situ. Recording using holography provides several advantages over conventional sampling methods in that it allows non-intrusive, non-destructive, high-resolution imaging of large volumes (up to 10^5 cm^3) in three dimensions. The camera incorporates both in-line and off-axis holographic techniques, which allows particles from a few micrometres to tens of centimetres to be captured. In tandem with development of the HoloCam, a dedicated holographic replay system and an automated data extraction and image processing facility are being developed. These will allow, optimisation of the images recorded by the camera, identification of species and particle concentration plotting
A holographic system for subsea recording and analysis of plankton and other marine particles
We report here details of the design, development, initial testing and field-deployment of the HOLOMAR system for in-situ subsea holography and analysis of marine plankton and nonliving particles. HOLOMAR comprises a submersible holographic camera ("HoloCam") able to record in-line and off-axis holograms at depths down to 100 m, together with specialised reconstruction hardware ("HoloScan") linked to custom image processing and classification software. The HoloCam consists of a laser and power supply, holographic recording optics and holographic plate holders, a water-tight housing and a support frame. It utilises two basic holographic geometries, in-line and off-axis such that a wide range of species, sizes and concentrations can be recorded. After holograms have been recorded and processed they are reconstructed in full three-dimensional detail in air in a dedicated replay facility. A computer-controlled microscope, using video cameras to record the image at a given depth, is used to digitise the scene. Specially written software extracts a binarised image of an object in its true focal plane and is classified using a neural network. The HoloCam was deployed on two separate cruises in a Scottish sea loch (Loch Etive) to a depth of 100 m and over 300 holograms were recorded
Spectropolarimetry of Supernovae
Overwhelming evidence has accumulated in recent years that supernova
explosions are intrinsically 3-dimensional phenomena with significant
departures from spherical symmetry. We review the evidence derived from
spectropolarimetry that has established several key results: virtually all
supernovae are significantly aspherical near maximum light; core-collapse
supernovae behave differently than thermonuclear (Type Ia) supernovae; the
asphericity of core-collapse supernovae is stronger in the inner layers showing
that the explosion process itself is strongly aspherical; core-collapse
supernovae tend to establish a preferred direction of asymmetry; the
asphericity is stronger in the outer layers of thermonuclear supernovae
providing constraints on the burning process. We emphasize the utility of the
Q/U plane as a diagnostic tool and revisit SN 1987A and SN 1993J in a
contemporary context. An axially-symmetric geometry can explain many basic
features of core-collapse supernovae, but significant departures from axial
symmetry are needed to explain most events. We introduce a spectropolarimetry
type to classify the range of behavior observed in polarized supernovae.
Understanding asymmetries in supernovae is important for phenomena as diverse
as the origins of gamma-ray bursts and the cosmological applications of Type Ia
supernovae in studies of the dark energy content of the universe.Comment: Draft of Annual Review article prior to final copy editing; 85 pages,
13 figures, 1 tabl
Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance
Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aro- matic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol sub- stituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logRe- sistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications
Low Friction Flows of Liquids at Nanopatterned Interfaces
With the recent important development of microfluidic systems,
miniaturization of flow devices has become a real challenge. Microchannels,
however, are characterized by a large surface to volume ratio, so that surface
properties strongly affect flow resistance in submicrometric devices. We
present here results showing that the concerted effect of wetting . properties
and surface roughness may considerably reduce friction of the fluid past the
boundaries. The slippage of the fluid at the channel boundaries is shown to be
drastically increased by using surfaces that are patterned at the nanometer
scale. This effect occurs in the regime where the surface pattern is partially
dewetted, in the spirit of the 'superhydrophobic' effects that have been
recently discovered at the macroscopic scales. Our results show for the first
time that, in contrast to the common belief, surface friction may be reduced by
surface roughness. They also open the possibility of a controlled realization
of the 'nanobubbles' that have long been suspected to play a role in
interfacial slippag
Development and formative evaluation of the e-Health implementation toolkit
<b>Background</b> The use of Information and Communication Technology (ICT) or e-Health is seen as essential for a modern, cost-effective health service. However, there are well documented problems with implementation of e-Health initiatives, despite the existence of a great deal of research into how best to implement e-Health (an example of the gap between research and practice). This paper reports on the development and formative evaluation of an e-Health Implementation Toolkit (e-HIT) which aims to summarise and synthesise new and existing research on implementation of e-Health initiatives, and present it to senior managers in a user-friendly format.<p></p>
<b>Results</b> The content of the e-HIT was derived by combining data from a systematic review of reviews of barriers and facilitators to implementation of e-Health initiatives with qualitative data derived from interviews of "implementers", that is people who had been charged with implementing an e-Health initiative. These data were summarised, synthesised and combined with the constructs from the Normalisation Process Model. The software for the toolkit was developed by a commercial company (RocketScience). Formative evaluation was undertaken by obtaining user feedback. There are three components to the toolkit - a section on background and instructions for use aimed at novice users; the toolkit itself; and the report generated by completing the toolkit. It is available to download from http://www.ucl.ac.uk/pcph/research/ehealth/documents/e-HIT.xls<p></p>
<b>Conclusions</b> The e-HIT shows potential as a tool for enhancing future e-Health implementations. Further work is needed to make it fully web-enabled, and to determine its predictive potential for future implementations
Children's Medicines in Tanzania: A National Survey of Administration Practices and Preferences.
The dearth of age-appropriate formulations of many medicines for children poses a major challenge to pediatric therapeutic practice, adherence, and health care delivery worldwide. We provide information on current administration practices of pediatric medicines and describe key stakeholder preferences for new formulation characteristics. We surveyed children aged 6-12 years, parents/caregivers over age 18 with children under age 12, and healthcare workers in 10 regions of Tanzania to determine current pediatric medicine prescription and administration practices as well as preferences for new formulations. Analyses were stratified by setting, pediatric age group, parent/caregiver education, and healthcare worker cadre. Complete data were available for 206 children, 202 parents/caregivers, and 202 healthcare workers. Swallowing oral solid dosage forms whole or crushing/dissolving them and mixing with water were the two most frequently reported methods of administration. Children frequently reported disliking medication taste, and many had vomited doses. Healthcare workers reported medicine availability most significantly influences prescribing practices. Most parents/caregivers and children prefer sweet-tasting medicine. Parents/caregivers and healthcare workers prefer oral liquid dosage forms for young children, and had similar thresholds for the maximum number of oral solid dosage forms children at different ages can take. There are many impediments to acceptable and accurate administration of medicines to children. Current practices are associated with poor tolerability and the potential for under- or over-dosing. Children, parents/caregivers, and healthcare workers in Tanzania have clear preferences for tastes and formulations, which should inform the development, manufacturing, and marketing of pediatric medications for resource-limited settings
Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels
In this contribution we review recent efforts on investigations of the effect
of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We
demonstrate the applicability of the method to treat fundamental questions in
microfluidics by investigating fluid flow in hydrophobic and rough
microchannels as well as over surfaces covered by nano- or microscale gas
bubbles.Comment: 11 pages, 6 figure
- …
