609 research outputs found

    Early Childhood Development and Schooling Attainment: Longitudinal Evidence from British, Finnish and Philippine Birth Cohorts

    No full text
    Background While recent literature has highlighted the importance of early childhood development for later life outcomes, comparatively little is known regarding the relative importance of early physical and cognitive development in predicting educational attainment cross-culturally. Methods We used prospective data from three birth cohorts: the Northern Finland Birth Cohort of 1986 (NFBC1986), the 1970 British Cohort Study (BCS1970), and the Cebu Longitudinal Health and Nutrition Survey of 1983 (CLHNS) to assess the association of height-for-age z-score (HAZ) and cognitive development measured prior to age 8 with schooling attainment. Multivariate linear regression models were used to estimate baseline and adjusted associations. Results Both physical and cognitive development were highly predictive of adult educational attainment conditional on parental characteristics. The largest positive associations between physical development and schooling were found in the CLHNS (β = 0.53, 95%-CI: [0.32, 0.74]) with substantially smaller associations in the BCS1970 (β = 0.10, 95% CI [0.04, 0.16]) and the NFBC1986 (β = 0.06, 95% CI [-0.05, 0.16]). Strong associations between cognitive development and educational attainment were found for all three cohorts (NFBC1986: β = 0.22, 95%-CI: [0.12, 0.31], BCS1970: β = 0.58, 95%-CI: [0.52, 0.64], CLHNS: β = 1.08, 95%-CI: [0.88, 1.27]). Models jointly estimating educational associations of physical and cognitive development demonstrated weaker associations for physical development and minimal changes for cognitive development. Conclusion The results indicate that although physical and cognitive early development are both important predictors of educational attainment, cognitive development appears to play a particularly important role. The large degree of heterogeneity in the observed effect sizes suggest that the importance of early life physical growth and cognitive development is highly dependent on socioeconomic and institutional contexts

    Original Article

    Get PDF
    The development of cognitive and socioemotional skills early in life influences later health and well-being. Existing estimates of unmet developmental potential in low- and middle-income countries (LMICs) are based on either measures of physical growth or proxy measures such as poverty. In this paper we aim to directly estimate the number of children in LMICs who would be reported by their caregivers to show low cognitive and/or socioemotional development.The present paper uses Early Childhood Development Index (ECDI) data collected between 2005 and 2015 from 99,222 3- and 4-y-old children living in 35 LMICs as part of the Multiple Indicator Cluster Survey (MICS) and Demographic and Health Surveys (DHS) programs. First, we estimate the prevalence of low cognitive and/or socioemotional ECDI scores within our MICS/DHS sample. Next, we test a series of ordinary least squares regression models predicting low ECDI scores across our MICS/DHS sample countries based on country-level data from the Human Development Index (HDI) and the Nutrition Impact Model Study. We use cross-validation to select the model with the best predictive validity. We then apply this model to all LMICs to generate country-level estimates of the prevalence of low ECDI scores globally, as well as confidence intervals around these estimates. In the pooled MICS and DHS sample, 14.6% of children had low ECDI scores in the cognitive domain, 26.2% had low socioemotional scores, and 36.8% performed poorly in either or both domains. Country-level prevalence of low cognitive and/or socioemotional scores on the ECDI was best represented by a model using the HDI as a predictor. Applying this model to all LMICs, we estimate that 80.8 million children ages 3 and 4 y (95% CI 48.1 million, 113.6 million) in LMICs experienced low cognitive and/or socioemotional development in 2010, with the largest number of affected children in sub-Saharan Africa (29.4.1 million; 43.8% of children ages 3 and 4 y), followed by South Asia (27.7 million; 37.7%) and the East Asia and Pacific region (15.1 million; 25.9%). Positive associations were found between low development scores and stunting, poverty, male sex, rural residence, and lack of cognitive stimulation. Additional research using more detailed developmental assessments across a larger number of LMICs is needed to address the limitations of the present study.The number of children globally failing to reach their developmental potential remains large. Additional research is needed to identify the specific causes of poor developmental outcomes in diverse settings, as well as potential context-specific interventions that might promote children's early cognitive and socioemotional well-being

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols

    Crystal structures and binding dynamics of Odorant-Binding Protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri

    Get PDF
    Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (-)-α- pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket

    The crystal structure of human Rogdi provides insight into the causes of Kohlschutter-Tonz Syndrome

    Get PDF
    Kohlschutter-Tönz syndrome (KTS) is a rare autosomal-recessive disorder of childhood onset characterized by global developmental delay, spasticity, epilepsy, and amelogenesis imperfecta. Rogdi, an essential protein, is highly conserved across metazoans, and mutations in Rogdi are linked to KTS. However, how certain mutations in Rogdi abolish its physiological functions and cause KTS is not known. In this study, we determined the crystal structure of human Rogdi protein at atomic resolution. Rogdi forms a novel elongated curved structure comprising the ?? domain, a leucine-zipper-like four-helix bundle, and a characteristic ??-sheet domain. Within the ?? domain, the N-terminal H1 helix (residues 19-45) pairs with the C-terminal H6 helix (residues 252-287) in an antiparallel manner, indicating that the integrity of the four-helix bundle requires both N- and C-terminal residues. The crystal structure, in conjunction with biochemical data, indicates that the ?? domain might undergo a conformational change and provide a structural platform for protein-protein interactions. Disruption of the four-helix bundle by mutation results in significant destabilization of the structure. This study provides structural insights into how certain mutations in Rogdi affect its structure and cause KTS, which has important implications for the development of pharmaceutical agents against this debilitating neurological disease

    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells

    Get PDF
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals

    Inhibition of HIV virus by neutralizing Vhh attached to dual functional liposomes encapsulating dapivirine

    Get PDF
    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations

    Microglial activation and chronic neurodegeneration

    Get PDF
    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype
    corecore