1,114 research outputs found
Urinary Monocyte Chemoattractant Protein-1 Levels and Interstitial Changes in the Renal Cortex and Their Relationship with Loss of Renal Function in Renal Transplant Patients with Delayed Graft Function
Background: Inflammatory cell infiltration and residual areas of fibrosis in kidneys after renal transplantation can lead to functional abnormalities with long-term implications. Objectives: The aim of this study was to determine urinary monocyte chemoattractant protein-1 (uMCP-1) levels, relative cortical interstitial area (RCIA), and cortical tubulointerstitial macrophage infiltration in renal transplant patients with delayed graft function (DGF) and their possible correlation with graft outcome. Design: Patients were followed after biopsies for one year, and their renal function and structure were evaluated, as well as parameters of inflammatory process. Setting: Clinical Hospital of the School of Medicine of Ribeirão Preto. Patients: Twenty-two cadaveric kidney transplant recipients with DGF were followed for one year. Measurements: Renal function, RCIA, macrophages infiltration and uMCP-1 levels were evaluated. Methods: Renal function was evaluated by plasma creatinine levels. RCIA was determined by morphometry. Immunohistochemical staining of macrophages was performed using an anti-CD68 monoclonal antibody. uMCP-1 levels were determined using a human MCP-1/CCL2 immunoassay kit. Results: There was a significant increase in uMCP-1 levels in transplant patients compared with controls ( p < 0.001). RCIA was 7.1% (6.4 to 9.2; median and 25th to 75th percentiles) in controls and 37.1% (28.1 to 43.7) in patients with kidney transplants ( p < 0.001). The patients who presented with a higher RCIA in the first biopsy showed higher levels of plasma creatinine one year after transplantation (r = 0.44; p < 0.05). The number of tubulointerstitial macrophages per 0.10 mm 2 grid field was higher in the renal cortex of transplant patients compared with the controls (19.4 (9.0 to 47.1) vs. 2.5 (1.8 to 3.4), p < 0.001). There was also a positive correlation between the RCIA and the number of tubulointerstitial macrophages in the renal cortex of these patients (r = 0.49; p < 0.001). Limitations: The number of patients studied was relatively small and may not be reflecting outcomes over a larger spectrum of kidney cadaveric transplants. Conclusions: Our results demonstrate increased levels of uMCP-1 in transplant patients with DGF, in addition to increased tubulointerstitial macrophage infiltration and RCIA, which could predict the outcome of renal function in these patients
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels
In this contribution we review recent efforts on investigations of the effect
of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We
demonstrate the applicability of the method to treat fundamental questions in
microfluidics by investigating fluid flow in hydrophobic and rough
microchannels as well as over surfaces covered by nano- or microscale gas
bubbles.Comment: 11 pages, 6 figure
Observation of the Fractional Quantum Hall Effect in Graphene
When electrons are confined in two dimensions and subjected to strong
magnetic fields, the Coulomb interactions between them become dominant and can
lead to novel states of matter such as fractional quantum Hall liquids. In
these liquids electrons linked to magnetic flux quanta form complex composite
quasipartices, which are manifested in the quantization of the Hall
conductivity as rational fractions of the conductance quantum. The recent
experimental discovery of an anomalous integer quantum Hall effect in graphene
has opened up a new avenue in the study of correlated 2D electronic systems, in
which the interacting electron wavefunctions are those of massless chiral
fermions. However, due to the prevailing disorder, graphene has thus far
exhibited only weak signatures of correlated electron phenomena, despite
concerted experimental efforts and intense theoretical interest. Here, we
report the observation of the fractional quantum Hall effect in ultraclean
suspended graphene, supporting the existence of strongly correlated electron
states in the presence of a magnetic field. In addition, at low carrier density
graphene becomes an insulator with an energy gap tunable by magnetic field.
These newly discovered quantum states offer the opportunity to study a new
state of matter of strongly correlated Dirac fermions in the presence of large
magnetic fields
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films
The outstanding electrical and mechanical properties of graphene make it very
attractive for several applications, Nanoelectronics above all. However a
reproducible and non destructive way to produce high quality, large-scale area,
single layer graphene sheets is still lacking. Chemical Vapour Deposition of
graphene on Cu catalytic thin films represents a promising method to reach this
goal, because of the low temperatures (T < 900 Celsius degrees) involved during
the process and of the theoretically expected monolayer self-limiting growth.
On the contrary such self-limiting growth is not commonly observed in
experiments, thus making the development of techniques allowing for a better
control of graphene growth highly desirable. Here we report about the local
ablation effect, arising in Raman analysis, due to the heat transfer induced by
the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages,
PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to
SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected,
"Results and discussion" section significantly extended to better explain
etching mechanism and features of Raman spectra, references adde
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
- …
