37 research outputs found

    Online RPM and MFN under Antitrust Law and Economics

    Get PDF
    The legal framing of a firm’s pricing strategy can determine whether it constitutes online resale price maintenance (RPM) or online most favored nation (MFN). Together, cases that involve online RPM and MFN can be viewed as a natural experiment of how antitrust economics and law may adapt to an online world. Thus far, legal theories that have been inconsistent with economic theories have dictated enforcement across jurisdictions, which has led to confusion that thwarts potentially efficient business practices. This paper distinguishes issues of online RPM from traditional RPM and online RPM from online MFN. We apply the economics learning to RPM and analyze the antitrust cases of online RPM and MFN to date in the United States, Europe, and Australia. Finally, we offer policy recommendations that reduce the confusion in current legal doctrine

    First generation immigrant judgements of offence seriousness: evidence from the crime survey for England and Wales

    Get PDF
    This exploratory paper delves into differences and similarities in the rated seriousness of offences suffered by victims of different national origin. The issue is important because a mismatch between police and victim assessments of seriousness is likely to fuel discord. It was found that first generation immigrants did not differ in their rating of the seriousness of offences against the person from either the indigenous population or according to region of birth. However those of Asian origin rated vehicle and property crime they had suffered as more serious than did other groups about crimes they suffered. The anticipated higher seriousness rating of offences reported to the police r was observed for all groups. People of Asian origin reported to the police a smaller proportion of offences they rated trivial than did people in other groups. Analysis of seriousness judgements in victimization surveys represents a much-underused resource for understanding the nexus between public perceptions and criminal justice responses

    A Switching Mechanism in Doxorubicin Bioactivation Can Be Exploited to Control Doxorubicin Toxicity

    Get PDF
    Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation

    Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition

    Get PDF
    Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a “shift” of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis

    Roles for retrotransposon insertions in human disease

    Get PDF

    Metabolism of ara-C by blast cells from patients with ANLL

    Full text link
    The dose-response relationship between extracellular concentration of cytosine arabinoside (ara-C) and intracellular formation of the putative active metabolites of ara-C [ara-C incorporation into DNA and intracellular pools of ara-C in triphosphate form (ara-CTP)] was investigated in blast cells obtained from patients with acute nonlymphocytic leukemia (ANLL) by exposing these cells in vitro to 10, 100, or 1,000 nmol/L of ara-C. We studied 23 untreated patients who subsequently achieved complete remission (CR) with a regimen using daunorubicin and conventional doses of ara-C (ara-C-sensitive group), and 30 patients judged to be ara-C-resistant either by failing initial induction therapy (16 patients) or by having relapsed on an ara-C- containing maintenance regimen (14 patients). In both patient groups, ara-C incorporation into DNA and intracellular ara-CTP both displayed statistically significant increases in response to increasing extracellular concentrations of ara-C (P = .0001 in both cases), with the rate of increase of ara-CTP greater than that of ara-C incorporation. Moreover, blast cells from all patients, even those who were most clinically resistant to ara-C, were able to form ara-CTP and to incorporate ara-C into DNA. Each tenfold increment in extracellular ara-C concentration caused an 8.5-fold increase in ara-CTP, but only a 3.6-fold increase in ara-C incorporation into DNA. Thus, the efficiency of incorporation of ara-C into DNA (defined as the ratio of ara-C incorporation to ara-CTP pools) decreased by 58% with each tenfold increment in the extracellular concentration of ara-C (P less than .0001), presumably as a result of the inhibitory effect of ara-CTP on DNA polymerase. Using an analysis of covariance, modest differences were found in the levels of the ara-C metabolite variables in the ara-C- sensitive group as compared with the resistant group. However, because there was considerable overlap in ara-C metabolite formation among the patient groups, it was not possible to predict clinical outcome by these in vitro assessments of ara-C metabolism.</jats:p

    Metabolism of ara-C by blast cells from patients with ANLL

    Full text link
    Abstract The dose-response relationship between extracellular concentration of cytosine arabinoside (ara-C) and intracellular formation of the putative active metabolites of ara-C [ara-C incorporation into DNA and intracellular pools of ara-C in triphosphate form (ara-CTP)] was investigated in blast cells obtained from patients with acute nonlymphocytic leukemia (ANLL) by exposing these cells in vitro to 10, 100, or 1,000 nmol/L of ara-C. We studied 23 untreated patients who subsequently achieved complete remission (CR) with a regimen using daunorubicin and conventional doses of ara-C (ara-C-sensitive group), and 30 patients judged to be ara-C-resistant either by failing initial induction therapy (16 patients) or by having relapsed on an ara-C- containing maintenance regimen (14 patients). In both patient groups, ara-C incorporation into DNA and intracellular ara-CTP both displayed statistically significant increases in response to increasing extracellular concentrations of ara-C (P = .0001 in both cases), with the rate of increase of ara-CTP greater than that of ara-C incorporation. Moreover, blast cells from all patients, even those who were most clinically resistant to ara-C, were able to form ara-CTP and to incorporate ara-C into DNA. Each tenfold increment in extracellular ara-C concentration caused an 8.5-fold increase in ara-CTP, but only a 3.6-fold increase in ara-C incorporation into DNA. Thus, the efficiency of incorporation of ara-C into DNA (defined as the ratio of ara-C incorporation to ara-CTP pools) decreased by 58% with each tenfold increment in the extracellular concentration of ara-C (P less than .0001), presumably as a result of the inhibitory effect of ara-CTP on DNA polymerase. Using an analysis of covariance, modest differences were found in the levels of the ara-C metabolite variables in the ara-C- sensitive group as compared with the resistant group. However, because there was considerable overlap in ara-C metabolite formation among the patient groups, it was not possible to predict clinical outcome by these in vitro assessments of ara-C metabolism.</jats:p

    Metabolism of ara-C by blast cells from patients with ANLL

    No full text

    A Modified Enzymatic Method for Measurement of Glycogen Content in Glycogen Storage Disease Type IV

    No full text
    Deficiency of glycogen branching enzyme in glycogen storage disease type IV (GSD IV) results in accumulation of less-branched and poorly soluble polysaccharides (polyglucosan bodies) in multiple tissues. Standard enzymatic method, when used to quantify glycogen content in GSD IV tissues, causes significant loss of the polysaccharides during preparation of tissue lysates. We report a modified method including an extra boiling step to dissolve the insoluble glycogen, ultimately preserving the glycogen content in tissue homogenates from GSD IV mice. Muscle tissues from wild-type, GSD II and GSD IV mice and GSD III dogs were homogenized in cold water, and homogenate of each tissue was divided into two parts. One part was immediately clarified by centrifugation at 4°C (STD-prep); the other part was boiled for 5 min then centrifuged (Boil-prep) at room temperature. When glycogen was quantified enzymatically in tissue lysates, no significant differences were found between the STD-prep and the Boil-prep for wild-type, GSD II and GSD III muscles. In contrast, glycogen content for GSD IV muscle in the STD-prep was only 11% of that in the Boil-prep, similar to wild-type values. Similar results were observed in other tissues of GSD IV mice and fibroblast cells from a GSD IV patient. This study provides important information for improving disease diagnosis, monitoring disease progression, and evaluating treatment outcomes in both clinical and preclinical clinical settings for GSD IV. This report should be used as an updated protocol in clinical diagnostic laboratories
    corecore