9 research outputs found

    Identification of a predominant isolate of Mycobacterium tuberculosis using molecular and clinical epidemiology tools and in vitro cytokine responses

    Get PDF
    BACKGROUND: Tuberculosis (TB) surveillance programs in Canada have established that TB in Canada is becoming a disease of geographically and demographically distinct groups. In 1995, treaty status aboriginals from the province of Manitoba accounted for 46% of the disease burden of this sub-group in Canada. The TB incidence rates are dramatically high in certain reserves of Manitoba and are equivalent to rates in African countries. The objective of our study was to identify prevalent isolates of Mycobacterium tuberculosis in the patient population of Manitoba using molecular epidemiology tools, studying the patient demographics associated with the prevalent strain and studying the in vitro cytokine profiles post-infection with the predominant strain. METHODS: Molecular typing was performed on all isolates available between 1992 to1997. A clinical database was generated using patient information from Manitoba. THP-1 cells were infected using strains of M. tuberculosis and cytokine profiles were determined using immunoassays for cytokines IL-1β, IL-10, IL-12, IFN-γ and TNF-α. RESULTS: In Manitoba, 24% of the disease burden is due to a particular M. tuberculosis strain (Type1). The strain is common in patients of aboriginal decent and is responsible for at least 87% of these cases. Cytokine assays indicate that the Type1 strain induces comparatively lower titers of IL-1β, IFN-γ and TNF-α in infected THP-1 cells as compared to H37Ra and H37Rv strains. CONCLUSION: In Manitoba, Type1 strain is predominant in TB patients. The majority of the cases infected with this particular strain are newly active with a high incidence of respiratory disease, positive chest radiographs and pulmonary cavities. In vitro secretion of IL-1β, IFN-γ and TNF-α is suppressed in Type1 infected culture samples when compared to H37Ra and H37Rv infected cells

    Pro-Inflammatory Mediation of Myoblast Proliferation

    Get PDF
    Skeletal muscle satellite cell function is largely dictated by the surrounding environment following injury. Immune cell infiltration dominates the extracellular space in the injured area, resulting in increased cytokine concentrations. While increased pro-inflammatory cytokine expression has been previously established in the first 3 days following injury, less is known about the time course of cytokine expression and the specific mechanisms of cytokine induced myoblast function. Therefore, the expression of IL-1b and IL-6 at several time points following injury, and their effects on myoblast proliferation, were examined. In order to do this, skeletal muscle was injured using barium chloride in mice and tissue was collected 1, 5, 10, and 28 days following injury. Mechanisms of cytokine induced proliferation were determined in cell culture using both primary and C2C12 myoblasts. It was found that there is a ,20-fold increase in IL-1b (p#0.05) and IL-6 (p = 0.06) expression 5 days following injury. IL-1b increased proliferation of both primary and C2C12 cells ,25%. IL-1b stimulation also resulted in increased NF-kB activity, likely contributing to the increased proliferation. These data demonstrate for the first time that IL-1b alone can increase the mitogenic activity of primary skeletal muscle satellite cells and offer insight into the mechanisms dictating satellite cell function following injury

    Parasitic Infections of the Genito-urinary Tract

    No full text

    Die Pathologie der Avitaminosen und Hypervitaminosen

    No full text
    corecore