304 research outputs found

    Emerging pharmacotherapy for cancer patients with cognitive dysfunction

    Get PDF
    Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction

    Increasing consistency of disease biomarker prediction across datasets

    Get PDF
    Microarray studies with human subjects often have limited sample sizes which hampers the ability to detect reliable biomarkers associated with disease and motivates the need to aggregate data across studies. However, human gene expression measurements may be influenced by many non-random factors such as genetics, sample preparations, and tissue heterogeneity. These factors can contribute to a lack of agreement among related studies, limiting the utility of their aggregation. We show that it is feasible to carry out an automatic correction of individual datasets to reduce the effect of such 'latent variables' (without prior knowledge of the variables) in such a way that datasets addressing the same condition show better agreement once each is corrected. We build our approach on the method of surrogate variable analysis but we demonstrate that the original algorithm is unsuitable for the analysis of human tissue samples that are mixtures of different cell types. We propose a modification to SVA that is crucial to obtaining the improvement in agreement that we observe. We develop our method on a compendium of multiple sclerosis data and verify it on an independent compendium of Parkinson's disease datasets. In both cases, we show that our method is able to improve agreement across varying study designs, platforms, and tissues. This approach has the potential for wide applicability to any field where lack of inter-study agreement has been a concern. © 2014 Chikina, Sealfon

    mTOR: from growth signal integration to cancer, diabetes and ageing

    Get PDF
    In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France

    Oxygen supplementation facilitating successful prosthetic fitting and rehabilitation of a patient with severe chronic obstructive pulmonary disease following trans-tibial amputation: a case report

    Get PDF
    Abstract Introduction Dysvascular amputations are increasingly performed in patients with underlying cardiac and pulmonary disorders. A limb prosthesis is rarely offered to patients with severe chronic obstructive pulmonary disease because of their inability to achieve the high energy expenditure required for prosthetic ambulation. We describe a case of successful prosthetic fitting and rehabilitation of a patient with severe chronic obstructive pulmonary disease with the aid of oxygen supplementation. Case presentation A 67-year-old aboriginal woman with severe chronic obstructive pulmonary disease and hypercapnic respiratory failure underwent right trans-tibial (below the knee) amputation for severe foot gangrene. An aggressive rehabilitation program of conditioning exercises and gait training utilizing oxygen therapy was initiated. She was custom-fitted with a right trans-tibial prosthesis. A rehabilitation program improved her strength, endurance and stump contracture, and she was able to walk for short distances with the prosthesis. The motion analysis studies showed a cadence of 73.5 steps per minute, a velocity of 0.29 meters per second and no difference in right and left step time and step length. Conclusion This case report illustrates that patients with significant severe chronic obstructive pulmonary disease can be successfully fitted with limb prostheses and undergo rehabilitation using supplemental oxygen along with optimization of their underlying comorbidities. Despite the paucity of published information in this area, prosthesis fitting and rehabilitation should be considered in patients who have undergone amputation and have severe chronic obstructive disease.</p

    Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    The modification of the production of J/ψ, ψ(2S), and Υ(nS) (n=1,2,3) in p+Pb collisions with respect to their production in pp collisions has been studied. The p+Pb and pp datasets used in this paper correspond to integrated luminosities of 28 nb−1 and 25 pb−1 respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of J/ψ and ψ(2S) are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, RpPb for J/ψ and Υ(nS). No significant modification of the J/ψ production is observed while Υ(nS) production is found to be suppressed at low transverse momentum in p+Pb collisions relative to pp collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central p+Pb collisions

    Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task

    Get PDF
    The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully described with current state-space (ARMA) modeling efforts

    Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    Get PDF
    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms
    corecore