472 research outputs found

    Nonadaptive Amino Acid Convergence Rates Decrease over Time.

    Get PDF
    Convergence is a central concept in evolutionary studies because it provides strong evidence for adaptation. It also provides information about the nature of the fitness landscape and the repeatability of evolution, and can mislead phylogenetic inference. To understand the role of adaptive convergence, we need to understand the patterns of nonadaptive convergence. Here, we consider the relationship between nonadaptive convergence and divergence in mitochondrial and model proteins. Surprisingly, nonadaptive convergence is much more common than expected in closely related organisms, falling off as organisms diverge. The extent of the convergent drop-off in mitochondrial proteins is well predicted by epistatic or coevolutionary effects in our "evolutionary Stokes shift" models and poorly predicted by conventional evolutionary models. Convergence probabilities decrease dramatically if the ancestral amino acids of branches being compared have diverged, but also drop slowly over evolutionary time even if the ancestral amino acids have not substituted. Convergence probabilities drop-off rapidly for quickly evolving sites, but much more slowly for slowly evolving sites. Furthermore, once sites have diverged their convergence probabilities are extremely low and indistinguishable from convergence levels at randomized sites. These results indicate that we cannot assume that excessive convergence early on is necessarily adaptive. This new understanding should help us to better discriminate adaptive from nonadaptive convergence and develop more relevant evolutionary models with improved validity for phylogenetic inference

    Selection for cooperativity causes epistasis predominately between native contacts and enables epistasis-based structure reconstruction

    Get PDF
    We investigated the relationship between cooperativity and epistasis and found low cooperativity results in high epistasis between nonnative contacts, whereas high cooperatively results in epistasis mainly between native contacts. This provides a mechanistic explanation for why epistasis measurements can be used to reconstruct protein structure. The structure of GB1 protein has been successfully reconstructed using epistasis measurements, and we calculated its epistasis distribution for a cooperative and a noncooperative model. The structure of the native state is clearly mapped out in the cooperative model but becomes obscured in the noncooperative model due to the presence of a folding intermediate. We thus conclude that using epistasis measurements to reconstruct the native state of proteins with stable intermediates may not be appropriate

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures

    Get PDF
    Background: The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. Results: We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. Conclusions: We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vulturesopen

    Analysis of among-site variation in substitution patterns

    Get PDF
    Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (C⇒T and A⇒G) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome

    Inference of Co-Evolving Site Pairs: an Excellent Predictor of Contact Residue Pairs in Protein 3D structures

    Get PDF
    Residue-residue interactions that fold a protein into a unique three-dimensional structure and make it play a specific function impose structural and functional constraints on each residue site. Selective constraints on residue sites are recorded in amino acid orders in homologous sequences and also in the evolutionary trace of amino acid substitutions. A challenge is to extract direct dependences between residue sites by removing indirect dependences through other residues within a protein or even through other molecules. Recent attempts of disentangling direct from indirect dependences of amino acid types between residue positions in multiple sequence alignments have revealed that the strength of inferred residue pair couplings is an excellent predictor of residue-residue proximity in folded structures. Here, we report an alternative attempt of inferring co-evolving site pairs from concurrent and compensatory substitutions between sites in each branch of a phylogenetic tree. First, branch lengths of a phylogenetic tree inferred by the neighbor-joining method are optimized as well as other parameters by maximizing a likelihood of the tree in a mechanistic codon substitution model. Mean changes of quantities, which are characteristic of concurrent and compensatory substitutions, accompanied by substitutions at each site in each branch of the tree are estimated with the likelihood of each substitution. Partial correlation coefficients of the characteristic changes along branches between sites are calculated and used to rank co-evolving site pairs. Accuracy of contact prediction based on the present co-evolution score is comparable to that achieved by a maximum entropy model of protein sequences for 15 protein families taken from the Pfam release 26.0. Besides, this excellent accuracy indicates that compensatory substitutions are significant in protein evolution.Comment: 17 pages, 4 figures, and 4 tables with supplementary information of 5 figure

    Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    Get PDF
    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/

    BioPhysConnectoR: Connecting Sequence Information and Biophysical Models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most challenging aspects of biomolecular systems is the understanding of the coevolution in and among the molecule(s).</p> <p>A complete, theoretical picture of the selective advantage, and thus a functional annotation, of (co-)mutations is still lacking. Using sequence-based and information theoretical inspired methods we can identify coevolving residues in proteins without understanding the underlying biophysical properties giving rise to such coevolutionary dynamics. Detailed (atomistic) simulations are prohibitively expensive. At the same time reduced molecular models are an efficient way to determine the reduced dynamics around the native state. The combination of sequence based approaches with such reduced models is therefore a promising approach to annotate evolutionary sequence changes.</p> <p>Results</p> <p>With the <monospace>R</monospace> package <monospace>BioPhysConnectoR</monospace> we provide a framework to connect the information theoretical domain of biomolecular sequences to biophysical properties of the encoded molecules - derived from reduced molecular models. To this end we have integrated several fragmented ideas into one single package ready to be used in connection with additional statistical routines in <monospace>R</monospace>. Additionally, the package leverages the power of modern multi-core architectures to reduce turn-around times in evolutionary and biomolecular design studies. Our package is a first step to achieve the above mentioned annotation of coevolution by reduced dynamics around the native state of proteins.</p> <p>Conclusions</p> <p><monospace>BioPhysConnectoR</monospace> is implemented as an <monospace>R</monospace> package and distributed under GPL 2 license. It allows for efficient and perfectly parallelized functional annotation of coevolution found at the sequence level.</p

    Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation

    Get PDF
    BACKGROUND: There is currently no way to verify the quality of a multiple sequence alignment that is independent of the assumptions used to build it. Sequence alignments are typically evaluated by a number of established criteria: sequence conservation, the number of aligned residues, the frequency of gaps, and the probable correct gap placement. Covariation analysis is used to find putatively important residue pairs in a sequence alignment. Different alignments of the same protein family give different results demonstrating that covariation depends on the quality of the sequence alignment. We thus hypothesized that current criteria are insufficient to build alignments for use with covariation analyses. METHODOLOGY/PRINCIPAL FINDINGS: We show that current criteria are insufficient to build alignments for use with covariation analyses as systematic sequence alignment errors are present even in hand-curated structure-based alignment datasets like those from the Conserved Domain Database. We show that current non-parametric covariation statistics are sensitive to sequence misalignments and that this sensitivity can be used to identify systematic alignment errors. We demonstrate that removing alignment errors due to 1) improper structure alignment, 2) the presence of paralogous sequences, and 3) partial or otherwise erroneous sequences, improves contact prediction by covariation analysis. Finally we describe two non-parametric covariation statistics that are less sensitive to sequence alignment errors than those described previously in the literature. CONCLUSIONS/SIGNIFICANCE: Protein alignments with errors lead to false positive and false negative conclusions (incorrect assignment of covariation and conservation, respectively). Covariation analysis can provide a verification step, independent of traditional criteria, to identify systematic misalignments in protein alignments. Two non-parametric statistics are shown to be somewhat insensitive to misalignment errors, providing increased confidence in contact prediction when analyzing alignments with erroneous regions because of an emphasis on they emphasize pairwise covariation over group covariation
    corecore