2,005 research outputs found
Chain Reduction for Binary and Zero-Suppressed Decision Diagrams
Chain reduction enables reduced ordered binary decision diagrams (BDDs) and
zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the
others' ability to symbolically represent Boolean functions in compact form.
For any Boolean function, its chain-reduced ZDD (CZDD) representation will be
no larger than its ZDD representation, and at most twice the size of its BDD
representation. The chain-reduced BDD (CBDD) of a function will be no larger
than its BDD representation, and at most three times the size of its CZDD
representation. Extensions to the standard algorithms for operating on BDDs and
ZDDs enable them to operate on the chain-reduced versions. Experimental
evaluations on representative benchmarks for encoding word lists, solving
combinatorial problems, and operating on digital circuits indicate that chain
reduction can provide significant benefits in terms of both memory and
execution time
Run Generation Revisited: What Goes Up May or May Not Come Down
In this paper, we revisit the classic problem of run generation. Run
generation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size M ,
and output runs (contiguously sorted chunks of elements) that are as long as
possible.
We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are allowed to
be sorted or reverse sorted. We study the problem in the online setting, both
with and without resource augmentation, and in the offline setting.
(1) We analyze alternating-up-down replacement selection (runs alternate
between sorted and reverse sorted), which was studied by Knuth as far back as
1963. We show that this simple policy is asymptotically optimal. Specifically,
we show that alternating-up-down replacement selection is 2-competitive and no
deterministic online algorithm can perform better.
(2) We give online algorithms having smaller competitive ratios with resource
augmentation. Specifically, we exhibit a deterministic algorithm that, when
given a buffer of size 4M , is able to match or beat any optimal algorithm
having a buffer of size M . Furthermore, we present a randomized online
algorithm which is 7/4-competitive when given a buffer twice that of the
optimal.
(3) We demonstrate that performance can also be improved with a small amount
of foresight. We give an algorithm, which is 3/2-competitive, with
foreknowledge of the next 3M elements of the input stream. For the extreme case
where all future elements are known, we design a PTAS for computing the optimal
strategy a run generation algorithm must follow.
(4) Finally, we present algorithms tailored for nearly sorted inputs which
are guaranteed to have optimal solutions with sufficiently long runs
Noncooperative algorithms in self-assembly
We show the first non-trivial positive algorithmic results (i.e. programs
whose output is larger than their size), in a model of self-assembly that has
so far resisted many attempts of formal analysis or programming: the planar
non-cooperative variant of Winfree's abstract Tile Assembly Model.
This model has been the center of several open problems and conjectures in
the last fifteen years, and the first fully general results on its
computational power were only proven recently (SODA 2014). These results, as
well as ours, exemplify the intricate connections between computation and
geometry that can occur in self-assembly.
In this model, tiles can stick to an existing assembly as soon as one of
their sides matches the existing assembly. This feature contrasts with the
general cooperative model, where it can be required that tiles match on
\emph{several} of their sides in order to bind.
In order to describe our algorithms, we also introduce a generalization of
regular expressions called Baggins expressions. Finally, we compare this model
to other automata-theoretic models.Comment: A few bug fixes and typo correction
Improved Parallel Rabin-Karp Algorithm Using Compute Unified Device Architecture
String matching algorithms are among one of the most widely used algorithms
in computer science. Traditional string matching algorithms efficiency of
underlaying string matching algorithm will greatly increase the efficiency of
any application. In recent years, Graphics processing units are emerged as
highly parallel processor. They out perform best of the central processing
units in scientific computation power. By combining recent advancement in
graphics processing units with string matching algorithms will allows to speed
up process of string matching. In this paper we proposed modified parallel
version of Rabin-Karp algorithm using graphics processing unit. Based on that,
result of CPU as well as parallel GPU implementations are compared for
evaluating effect of varying number of threads, cores, file size as well as
pattern size.Comment: Information and Communication Technology for Intelligent Systems
(ICTIS 2017
Pattern Avoidance in Poset Permutations
We extend the concept of pattern avoidance in permutations on a totally
ordered set to pattern avoidance in permutations on partially ordered sets. The
number of permutations on that avoid the pattern is denoted
. We extend a proof of Simion and Schmidt to show that for any poset , and we exactly classify the posets for which
equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and
improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated
author email addresse
Binary Decision Diagrams: from Tree Compaction to Sampling
Any Boolean function corresponds with a complete full binary decision tree.
This tree can in turn be represented in a maximally compact form as a direct
acyclic graph where common subtrees are factored and shared, keeping only one
copy of each unique subtree. This yields the celebrated and widely used
structure called reduced ordered binary decision diagram (ROBDD). We propose to
revisit the classical compaction process to give a new way of enumerating
ROBDDs of a given size without considering fully expanded trees and the
compaction step. Our method also provides an unranking procedure for the set of
ROBDDs. As a by-product we get a random uniform and exhaustive sampler for
ROBDDs for a given number of variables and size
Classic and mirabolic Robinson-Schensted-Knuth correspondence for partial flags
In this paper we first generalize to the case of partial flags a result
proved both by Spaltenstein and by Steinberg that relates the relative position
of two complete flags and the irreducible components of the flag variety in
which they lie, using the Robinson-Schensted-Knuth correspondence. Then we use
this result to generalize the mirabolic Robinson-Schensted-Knuth correspondence
defined by Travkin, to the case of two partial flags and a line.Comment: 27 pages, slightly rewritten to combine two papers into one and
clarify some section
The Complexity of Separating Points in the Plane
We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations
The theory underlying a proposed random number generator for numerical
simulations in elementary particle physics and statistical mechanics is
discussed. The generator is based on an algorithm introduced by Marsaglia and
Zaman, with an important added feature leading to demonstrably good statistical
properties. It can be implemented exactly on any computer complying with the
IEEE--754 standard for single precision floating point arithmetic.Comment: pages 0-19, ps-file 174404 bytes, preprint DESY 93-13
- …
