28,108 research outputs found

    Real-space Hopfield diagonalization of inhomogeneous dispersive media

    Get PDF
    We introduce a real-space technique able to extend the standard Hopfield approach commonly used in quantum polaritonics to the case of inhomogeneous lossless materials interacting with the electromagnetic field. We derive the creation and annihilation polaritonic operators for the system normal modes as linear, space-dependent superpositions of the microscopic light and matter fields, and we invert the Hopfield transformation expressing the microscopic fields as functions of the polaritonic operators. As an example, we apply our approach to the case of a planar interface between vacuum and a polar dielectric, showing how we can consistently treat both propagative and surface modes, and express their nonlinear interactions, arising from phonon anharmonicity, as polaritonic scattering terms. We also show that our theory can be naturally extended to the case of dissipative materials

    Pompeii: Recent Works and New Acquisitions

    Get PDF

    Theoretical Investigation of Phonon Polaritons in SiC Micropillar Resonators

    Get PDF
    Of late there has been a surge of interest in localised phonon polariton resonators which allow for sub-diffraction confinement of light in the mid-infrared spectral region by coupling to optical phonons at the surface of polar dielectrics. Resonators are generally etched on deep substrates which support propagative surface phonon polariton resonances. Recent experimental work has shown that understanding the coupling between localised and propagative surface phonon polaritons in these systems is vital to correctly describe the system resonances. In this paper we comprehensively investigate resonators composed of arrays of cylindrical SiC resonators on SiC substrates. Our bottom-up approach, starting from the resonances of single, free standing cylinders and isolated substrates, and exploiting both numerical and analytical techniques, allows us to develop a consistent understanding of the parameter space of those resonators, putting on firmer ground this blossoming technology.Comment: 10 Pages, 8 Figure

    Observing the evolution of a quantum system that does not evolve

    Full text link
    This article deals with the problem of gathering information on the time evolution of a single metastable quantum system whose evolution is impeded by the quantum Zeno effect. It has been found it is in principle possible to obtain some information on the time evolution and, depending on the specific system, even to measure its average decay rate, even if the system does not undergo any evolution at all.Comment: Two over three PRA referees didn't like the old title... And no more quantum circuits in the new versio

    Cranial neuralgias: from physiopathology to pharmacological treatment

    Get PDF
    Cranial neuralgias are paroxysmal painful disorders of the head characterised by some shared features such as unilaterality of symptoms, transience and recurrence of attacks, superficial and "shock-like" quality of pain and the presence of triggering factors. Although rare, these disorders must be promptly recognised as they harbour a relatively high risk for underlying compressive or inflammatory disease. Nevertheless, misdiagnosis is frequent. Trigeminal and glossopharyngeal neuralgias are sustained in most cases by a neurovascular conflict in the posterior fossa resulting in a hyperexcitability state of the trigeminal circuitry. If the aetiology of trigeminal neuralgia (TN) and other typical neuralgias must be brought back to the peripheral injury, their pathogenesis could involve central allodynic mechanisms, which, in patients with inter-critical pain, also engage the nociceptive neurons at the thalamic-cortical level. Currently available medical treatments for TN and other cranial neuralgias are reviewed

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime
    corecore