285 research outputs found
Soil moisture-Temperature Coupling: A multiscale observational Analysis
[1] Land-atmospheric interactions are complex and variable in space and time. On average soil moisture-temperature coupling is expected to be stronger in transition zones between wet and dry climates. During heatwaves anomalously high coupling may be found in areas of soil moisture deficit and high atmospheric demand of water. Here a new approach is applied to satellite andin situobservations towards the characterization of regions of intense soil moisture-temperature coupling, both in terms of climatology and anomalies during heatwaves. The resulting average summertime couplinghot spotsreflect intermediate climatic regions in agreement with previous studies. Results at heatwave-scale suggest a minor role of soil moisture deficit during the heatwave of 2006 in California but an important one in the 2003 event in Western Europe. Progress towards near-real time satellite products may allow the application of the approach to aid prediction and management of warm extremes
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Recommended from our members
Developmental Foreign Accent Syndrome: report of a new case
This paper presents the case of a 17-year-old right-handed Belgian boy with developmental FAS and comorbid developmental apraxia of speech (DAS). Extensive neuropsychological and neurolinguistic investigations demonstrated a normal IQ but impaired planning (visuo-constructional dyspraxia). A Tc-99m-ECD SPECT revealed a significant hypoperfusion in the prefrontal and medial frontal regions, as well as in the lateral temporal regions. Hypoperfusion in the right cerebellum almost reached significance. It is hypothesized that these clinical findings support the view that FAS and DAS are related phenomena following impairment of the cerebro-cerebellar network
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
PHYSICAL ACTIVITY LEVEL DOES NOT INFLUENCE THE NEUROMUSCULAR FATIGUE IN ADULTS
Introduction: Fatigue during voluntary muscle contractions is a complex and multifactorial phenomenon associated with central changes and adaptations of the neuromuscular system. Objective: The purpose of this study was to evaluate the fatigue induced by intermittent successive extension of the knee between active and inactive university students. Method: Twenty healthy men (≥18 years), voluntarily participated in this study. To determine the maximum voluntary isometric contraction (MVIC) of the knee extensors muscle group, three sets of isometric contractions of knee extension were performed for five seconds with five minutes of rest between sets. The fatigue protocol consisted of 10 sets of 10 maximal concentric contractions of the extensor on the right knee, performed at 75% of MVIC with an interval of 45". Results: Significant reductions were observed (p<0.01), both in isometric strength (-34±4%) and the dynamic strength (-40 ± 3%). In addition, the slope of relationship strength x repetition was -0.79±0.07 Nm/repetitions and the magnitude of the effect reached -8.90. Conclusion: The protocol was useful to induce peripheral fatigue, although muscle strength is greater in the active group. In both isometric and dynamic action, muscle fatigue did not differ between groups
Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children
Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control
Assessment of muscle fatigue using sonomyography: Muscle thickness change detected from ultrasound images
Structural Color in Marine Algae
Structural colouration is widespread in the marine environment. Within the large variety of marine organisms, macroalgae represent a diverse group of more than 24,700 species. Some macroalgae have developed complex optical responses using different nanostructures and material compositions. In this review, we describe the mechanisms that are employed to produce structural colour in algae and provide a discussion on the functional relevance by analysing the geographical distribution and ecology in detail. In contrast to what is observed in the animal kingdom, we hypothesise that structural colour in algae predominantly functions for a non-communicative purpose, most likely protection from radiation damage, e.g. by harmful UV light. We suggest that the presence of structural colour in algae is likely influenced by local factors such as radiation intensity and turbidity of the water.Biotechnology and Biological Sciences Research Council (Grant ID: BBSRC David Phillips, 13 BB/K014617/1), European Research Council (Grant ID: ERC-2014-STG H2020 639088), Department of Chemistry, Cambridge (Philip and Patricia Brown Next Generation Fellowship), National Centre of Competence in Research “Bio-Inspired Materials”, Adolphe Merkle Foundatio
- …
