83 research outputs found

    Nutrient criteria to achieve New Zealand's riverine macroinvertebrate targets

    Get PDF
    Waterways worldwide are experiencing nutrient enrichment from population growth and intensive agriculture, and New Zealand is part of this global trend. Increasing fertilizer in New Zealand and intensive agriculture have driven substantial water quality declines over recent decades. A recent national directive has set environmental managers a range of riverine ecological targets, including three macroinvertebrate indicators, and requires nutrient criteria be set to support their achievement. To support these national aspirations, we use the minimization-of-mismatch analysis to derive potential nutrient criteria. Given that nutrient and macroinvertebrate monitoring often does not occur at the same sites, we compared nutrient criteria derived at sites where macroinvertebrates and nutrients are monitored concurrently with nutrient criteria derived at all macroinvertebrate monitoring sites and using modelled nutrients. To support all three macroinvertebrate targets, we suggest that suitable nutrient criteria would set median dissolved inorganic nitrogen concentrations at ~0.6 mg/L and median dissolved reactive phosphorus concentrations at ~0.02 mg/L. We recognize that deriving site-specific nutrient criteria requires the balancing of multiple values and consideration of multiple targets, and anticipate that criteria derived here will help and support these environmental goals.fals

    Nitrate enrichment does not affect enteropathogenic Escherichia coli in aquatic microcosms but may affect other strains present in aquatic habitats

    Get PDF
    Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.fals

    Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers

    Get PDF
    The emergence of clinically significant antimicrobial resistance (AMR) in bacteria is frequently attributed to the use of antimicrobials in humans and livestock and is often found concurrently with human and animal pathogens. However, the incidence and natural drivers of antimicrobial resistance and pathogenic virulence in the environment, including waterways and ground water, are poorly understood. Freshwater monitoring for microbial pollution relies on culturing bacterial species indicative of faecal pollution, but detection of genes linked to antimicrobial resistance and/or those linked to virulence is a potentially superior alternative. We collected water and sediment samples in the autumn and spring from three rivers in Canterbury, New Zealand; sites were above and below reaches draining intensive dairy farming. Samples were tested for loci associated with the AMR-related group 1 CTX-M enzyme production (bla CTX-M) and Shiga toxin producing Escherichia coli (STEC). The bla CTX-M locus was only detected during spring and was more prevalent downstream of intensive dairy farms. Loci associated with STEC were detected in both the autumn and spring, again predominantly downstream of intensive dairying. This cross-sectional study suggests that targeted testing of environmental DNA is a useful tool for monitoring waterways. Further studies are now needed to extend our observations across seasons and to examine the relationship between the presence of these genetic elements and the incidence of disease in humans.fals

    Detecting Genes Associated with Pathogenicity and Antimicrobial Resistance in Three New Zealand Waterways

    Get PDF

    Major agricultural changes required to mitigate phosphorus losses under climate change

    Get PDF
    Phosphorus losses from land to water will be impacted by climate change and land management for food production, with detrimental impacts on aquatic ecosystems. Here we use a unique combination of methods to evaluate the impact of projected climate change on future phosphorus transfers, and to assess what scale of agricultural change would be needed to mitigate these transfers. We combine novel high-frequency phosphorus flux data from three representative catchments across the UK, a new high-spatial resolution climate model, uncertainty estimates from an ensemble of future climate simulations, two phosphorus transfer models of contrasting complexity and a simplified representation of the potential intensification of agriculture based on expert elicitation from land managers. We show that the effect of climate change on average winter phosphorus loads (predicted increase up to 30% by 2050s) will be limited only by large-scale agricultural changes (e.g., 20–80% reduction in phosphorus inputs)

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    Freshwater invertebrate responses to fine sediment stress: A multi-continent perspective

    Get PDF
    Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.fals

    The influence of the landscape structure within buffer zones, catchment land use and instream environmental variables on mollusc communities in a medium-sized lowland river

    Get PDF
    The world’s freshwater molluscan fauna is facing unprecedented threats from habitat loss and degradation. Declines in native populations are mostly attributed to the human impact, which results in reduced water quality. The objectives of our survey were to analyse the structure of the mollusc communities in a medium-sized lowland river and to determine the most important environmental variables at different spatial scales, including landscape structure, catchment land use and instream environmental factors that influence their structure. Our survey showed that a medium-sized river, that flows through areas included in the European Ecological Natura 2000 Network Programme of protected sites, provides diverse instream habitats and niches that support 47 mollusc species including Unio crassus, a bivalve of Community interest, whose conservation requires the designation of a special conservation area under the Habitats Directive Natura 2000. This survey showed that mollusc communities are impacted by several environmental variables that act together at multiple scales. The landscape structure within buffer zones, catchment land use and instream environmental variables were all important and influenced the structure of mollusc communities. Therefore, they should all be taken into consideration in the future restoration of the river, future management projects and programmes for the conservation of biodiversity in running waters. The results of this study may be directly applicable for the rehabilitation of river ecosystems and are recommended to stakeholders in their future decision concerning landscape planning, monitoring species and their habitats, conservation plans and management in accordance with the requirements of sustainable development
    corecore