8,701 research outputs found
Study of Higgs boson production at LHC near the WW resonance
The study of WW Higgs boson decays is one of the key elements of the LHC
physics program, as these decays are dominant close to the WW resonance. Recent
results obtained using the full simulation of the detector are presented in the
framework of the Standard Model. Direct production, associated WH production
and boson fusion processes are considered.Comment: 4 pages, 4 figures, Presented at the XLIrst Rencontres de Moriond -
QCD and High Energy Hadronic Interaction
CMS Tracker commissioning and first operation experience
The CMS silicon strip tracker is the largest device of its type ever built. There are 24244 single-sided micro-strip sensors covering an active area of nearly 200 square meters. After a short introduction on the tracker, the program at the CMS tracker integration facility will be described. The strategy and results from the commissioning will be presented together with results on low-level detector performance. The general experience gained by operating the Tracker at different temperatures will be presented. This includes hardware aspects, acquisition software and infrastructures choices, or distributed data processing
DELPHES 3, A modular framework for fast simulation of a generic collider experiment
The version 3.0 of the DELPHES fast-simulation is presented. The goal of
DELPHES is to allow the simulation of a multipurpose detector for
phenomenological studies. The simulation includes a track propagation system
embedded in a magnetic field, electromagnetic and hadron calorimeters, and a
muon identification system. Physics objects that can be used for data analysis
are then reconstructed from the simulated detector response. These include
tracks and calorimeter deposits and high level objects such as isolated
electrons, jets, taus, and missing energy. The new modular approach allows for
greater flexibility in the design of the simulation and reconstruction
sequence. New features such as the particle-flow reconstruction approach,
crucial in the first years of the LHC, and pile-up simulation and mitigation,
which is needed for the simulation of the LHC detectors in the near future,
have also been implemented. The DELPHES framework is not meant to be used for
advanced detector studies, for which more accurate tools are needed. Although
some aspects of DELPHES are hadron collider specific, it is flexible enough to
be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014
Monitoring the CMS strip tracker readout system
The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system
Dependence of the critical temperature on the Higgs field reparametrization
We show that, despite of the reparametrization symmetry of the Lagrangian
describing the interaction between a scalar field and gauge vector bosons, the
dynamics of the Higgs mechanism is really affected by the representation gauge
chosen for the Higgs field. Actually, we find that, varying the parametrization
for the two degrees of freedom of the complex scalar field, we obtain different
expressions for the Higgs mass: in its turn this entails different expressions
for the critical temperatures, ranging from zero to a maximum value, as well as
different expressions for other basic thermodynamical quantities.Comment: revtex, 12 pages, 2 eps figure
Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV
This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
- …
