2,213 research outputs found

    Development of CMOS monolithic pixel sensors with in-pixel correlated double sampling and fast readout for the ILC

    Full text link
    This paper presents the design and results of detailed tests of a CMOS active pixel chip for charged particle detection with in-pixel charge storage for correlated double sampling and readout in rolling shutter mode at frequencies up to 25 MHz. This detector is developed in the framework of R&D for the Vertex Tracker for the International Linear Collider.Comment: 3 pages, 4 figures, to appear on the Conference Record of the 2007 IEEE Nuclear Science Symposium, Honolulu, HI, October 200

    The applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    Full text link
    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart dissipative hydrodynamics (IS) and Navier-Stokes theory (NS) for relativistic heavy ion physics applications. A massless ideal gas with 2->2 interactions is considered in a 0+1D Bjorken scenario, appropriate for the early longitudinal expansion stage of the collision. In the scale invariant case of a constant shear viscosity to entropy density ratio eta/s ~ const, we find that Israel-Stewart theory is 10% accurate in calculating dissipative effects if initially the expansion timescale exceeds half the transport mean free path tau0/lambda0 > ~2. The same accuracy with Navier-Stokes requires three times larger tau0/lambda0 > ~6. For dynamics driven by a constant cross section, on the other hand, about 50% larger tau0/lambda0 > ~3 (IS) and ~9 (NS) are needed. For typical applications at RHIC energies s_{NN}**(1/2) ~ 100-200 GeV, these limits imply that even the Israel-Stewart approach becomes marginal when eta/s > ~0.15. In addition, we find that the 'naive' approximation to Israel-Stewart theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic Israel-Stewart and Navier-Stokes solutions in 0+1D, and present further tests for numerical dissipative hydrodynamics codes in 1+1, 2+1, and 3+1D based on generalized conservation laws.Comment: 30 pages, 26 EPS figures, revtex stylefil

    Molecular mechanisms of increased cerebral vulnerability after repeated mild blast-induced traumatic brain injury

    Get PDF
    AbstractThe consequences of a mild traumatic brain injury can be especially severe if it is repeated within the period of increased cerebral vulnerability (ICV) that follows the initial insult. To better understand the molecular mechanisms that contribute to ICV, we exposed rats to different levels of mild blast overpressure (5 exposures; total pressure range: 15.54–19.41psi or 107.14–133.83kPa) at a rate of 1 per 30min, monitored select physiological parameters, and assessed behavior. Two days post-injury or sham, we determined changes in protein biomarkers related to various pathologies in behaviorally relevant brain regions and in plasma. We found that oxygen saturation and heart rate were transiently depressed following mild blast exposure and that injured rats exhibited significantly increased anxiety- and depression-related behaviors. Proteomic analyses of the selected brain regions showed evidence of substantial oxidative stress and vascular changes, altered cell adhesion, and inflammation predominantly in the prefrontal cortex. Importantly, these pathological changes as well as indications of neuronal and glial cell loss/damage were also detected in the plasma of injured rats. Our findings illustrate some of the complex molecular changes that contribute to the period of ICV in repeated mild blast-induced traumatic brain injury. Further studies are needed to determine the functional and temporal relationship between the various pathomechanisms. The validation of these and other markers can help to diagnose individuals with ICV using a minimally invasive procedure and to develop evidence-based treatments for chronic neuropsychiatric conditions

    Q fever epidemic in Hungary, April to July 2013

    Get PDF
    We investigated a Q fever outbreak with human patients showing high fever, respiratory tract symptoms, headache and retrosternal pain in southern Hungary in the spring and summer of 2013. Seventy human cases were confirmed by analysing their serum and blood samples with micro-immunofluorescence test and real-time PCR. The source of infection was a merino sheep flock of 450 ewes, in which 44.6% (25/56) seropositivity was detected by enzyme-linked immunosorbent assay. Coxiella burnetii DNA was detected by real-time PCR in the milk of four of 20 individuals and in two thirds (41/65) of the manure samples. The multispacer sequence typing examination of C. burnetii DNA revealed sequence type 18 in one human sample and two manure samples from the sheep flock. The multilocus variable-number tandem repeat analysis pattern of the sheep and human strains were also almost identical, 4/5-9-3-3-0-5 (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34). It is hypothesised that dried manure and maternal fluid contaminated with C. burnetii was dispersed by the wind from the sheep farm towards the local inhabitants. The manure was eliminated in June and the farm was disinfected in July. The outbreak ended at the end of July 2013

    Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria

    Get PDF
    The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks premorphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll’s ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths
    corecore