370 research outputs found
Effect of field of view and monocular viewing on angular size judgements in an outdoor scene
Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators
Time transfer using NAVSTAR GPS
A time transfer unit (TTU) developed for the U.S. Naval Observatory (USNO) has consistently demonstrated the transfer of time with accuracies much better than 100 nanoseconds. A new time transfer system (TTS), the TTS 502 was developed. The TTS 502 is a relatively compact microprocessor-based system with a variety of options that meet each individual's requirements, and has the same performance as the USNO system. The time transfer performance of that USNO system and the details of the new system are presented
Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media
We demonstrate that two-dimensional two-component bright solitons of an
annular shape, carrying vorticities in the components, may be
stable in media with the cubic-quintic nonlinearity, including the
\textit{hidden-vorticity} (HV) solitons of the type , whose net
vorticity is zero. Stability regions for the vortices of both types
are identified for , 2, and 3, by dint of the calculation of stability
eigenvalues, and in direct simulations. A novel feature found in the study of
the HV solitons is that their stability intervals never reach the (cutoff)
point at which the bright vortex carries over into a dark one, hence dark HV
solitons can never be stable, contrarily to the bright ones. In addition to the
well-known symmetry-breaking (\textit{external}) instability, which splits the
ring soliton into a set of fragments flying away in tangential directions, we
report two new scenarios of the development of weak instabilities specific to
the HV solitons. One features \textit{charge flipping}, with the two components
exchanging the angular momentum and periodically reversing the sign of their
spins. The composite soliton does not split in this case, therefore we identify
such instability as an \textit{intrinsic} one. Eventually, the soliton splits,
as weak radiation loss drives it across the border of the ordinary strong
(external) instability. Another scenario proceeds through separation of the
vortex cores in the two components, each individual core moving toward the
outer edge of the annular soliton. After expulsion of the cores, there remains
a zero-vorticity breather with persistent internal vibrations.Comment: 10 pages, 11 figure
Nonlinear Bloch modes in two-dimensional photonic lattices
We generate experimentally different types of two-dimensional Bloch waves of
a square photonic lattice by employing the phase imprinting technique. We probe
the local dispersion of the Bloch modes in the photonic lattice by analyzing
the linear diffraction of beams associated with the high-symmetry points of the
Brillouin zone, and also distinguish the regimes of normal, anomalous, and
anisotropic diffraction through observations of nonlinear self-action effects.Comment: 11 pages, 8 figure
Reliability analysis for the quench detection in the LHC machine
The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given
Band-gap solitons in nonlinear optically-induced lattices
We introduce novel optical solitons that consist of a periodic and a
spatially localized components coupled nonlinearly via cross-phase modulation.
The spatially localized optical field can be treated as a gap soliton supported
by the optically-induced nonlinear grating. We find different types of these
band-gap composite solitons and demonstrate their dynamical stability.Comment: 4 pages, 5 figure
Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude
Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and
Zr were made using a single arm magnetic spectrometer. Absolute calibration was
made by parallel measurements of Coulomb scattering of muons. Parameters of a
pion-nucleus optical potential were obtained from fits to all eight angular
distributions put together. The `anomalous' s-wave repulsion known from pionic
atoms is clearly observed and could be removed by introducing a
chiral-motivated density dependence of the isovector scattering amplitude,
which also greatly improved the fits to the data. The empirical energy
dependence of the isoscalar amplitude also improves the fits to the data but,
contrary to what is found with pionic atoms, on its own is incapable of
removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on
uncertainties,extended discussion. To appear in PR
Self-trapped bidirectional waveguides in a saturable photorefractive medium
We introduce a time-dependent model for the generation of joint solitary
waveguides by counter-propagating light beams in a photorefractive crystal.
Depending on initial conditions, beams form stable steady-state structures or
display periodic and irregular temporal dynamics. The steady-state solutions
are non-uniform in the direction of propagation and represent a general class
of self-trapped waveguides, including counterpropagating spatial vector
solitons as a particular case.Comment: 4 pages, 5 figure
Reduced-symmetry two-dimensional solitons in photonic lattices
We demonstrate theoretically and experimentally a novel type of localized
beams supported by the combined effects of total internal and Bragg reflection
in nonlinear two-dimensional square periodic structures. Such localized states
exhibit strong anisotropy in their mobility properties, being highly mobile in
one direction and trapped in the other, making them promising candidates for
optical routing in nonlinear lattices.Comment: 5 pages, 4 figure
Low Energy Analyzing Powers in Pion-Proton Elastic Scattering
Analyzing powers of pion-proton elastic scattering have been measured at PSI
with the Low Energy Pion Spectrometer LEPS as well as a novel polarized
scintillator target. Angular distributions between 40 and 120 deg (c.m.) were
taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic
energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering.
These new measurements constitute a substantial extension of the polarization
data base at low energies. Predictions from phase shift analyses are compared
with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure
- …
