2,824 research outputs found

    Ofatumumab and high-dose methylprednisolone for the treatment of patients with relapsed or refractory chronic lymphocytic leukemia.

    Get PDF
    Ofatumumab is a humanized anti-CD20 monoclonal antibody that has been approved by the FDA for the treatment of patients with chronic lymphocytic leukemia. We conducted a phase II single-arm study at a single center. Patients received ofatumumab (300 mg then 1000 mg weekly for 12 weeks) and methylprednisolone (1000 mg/m(2) for 3 days of each 28-day cycle). Twenty-one patients enrolled, including 29% with unfavorable cytogenetics (del17p or del11q). Ninety percent of patients received the full course without dose reductions or delays. The overall response rate was 81% (17/21) with 5% complete response, 10% nodular partial response, 67% partial response, 14% stable disease and 5% progressive disease. After a median follow-up of 31 months, the median progression-free survival was 9.9 months and the median time to next treatment was 12.1 months. The median overall survival has not yet been reached. The combination of high-dose methylprednisolone and ofatumumab is an effective and tolerable treatment regimen. This regimen may be useful for patients who are unable to tolerate more aggressive therapies, or have not responded to other treatments

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    The challenge of acute-stroke management: does telemedicine offer a solution?

    Get PDF
    <p><b>Background:</b> Several studies have described successful experiences with the use of telemedicine in acute stroke. The objective of this study was to assess the feasibility, acceptability, and treatment delivery reliability, of telemedicine systems for the clinical and radiological assessment, and management of acute-stroke patients.</p> <p><b>Summary of Review:</b> A systematic review of the literature was carried out. Studies were included if they met the following criteria: (1) study population included participants with a diagnosis of suspected acute stroke, (2) intervention included the use of telemedicine systems to aid assessment, diagnosis, or treatment in acute stroke, and (3) outcomes measured related to feasibility in clinical practice, acceptability to patients, carers, and staff, reliability of telemedicine systems, and effectiveness in delivering treatment, especially tissue plasminogen activator (tPA). Overall, 17 relevant non-randomised studies reported that telemedicine systems were feasible and acceptable. Interrater reliability was excellent for global clinical assessments and decisions on radiological exclusion criteria although agreement for individual assessment items was more variable. Telemedicine systems were associated with increased use of tPA.</p> <p><b>Conclusion:</b> Although there is limited reliable evidence, observational studies have indicated that telemedicine systems can be feasible, acceptable, and reliable in acute-stroke management. In addition, telemedicine consultations were associated with improved delivery of tPA.</p&gt

    Cavity Induced Interfacing of Atoms and Light

    Full text link
    This chapter introduces cavity-based light-matter quantum interfaces, with a single atom or ion in strong coupling to a high-finesse optical cavity. We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement intractably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    The Quantum Internet

    Get PDF
    Quantum networks offer a unifying set of opportunities and challenges across exciting intellectual and technical frontiers, including for quantum computation, communication, and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for the generation and characterization of quantum coherence and entanglement. Fundamental to this endeavor are quantum interconnects that convert quantum states from one physical system to those of another in a reversible fashion. Such quantum connectivity for networks can be achieved by optical interactions of single photons and atoms, thereby enabling entanglement distribution and quantum teleportation between nodes.Comment: 15 pages, 6 figures Higher resolution versions of the figures can be downloaded from the following link: http://www.its.caltech.edu/~hjkimble/QNet-figures-high-resolutio
    corecore