13 research outputs found
Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.
Interstitial pulmonary fibrosis induced by intratracheal instillation of bleomycin (BL) involves an excess production of reactive oxygen species, unavailability of adequate levels of NAD and ATP to repair the injured pulmonary epithelium, and an overexuberant lung collagen reactivity followed by deposition of highly cross-linked mature collagen fibrils resistant to enzymatic degradation. In the present study, we have demonstrated that dietary supplementation with taurine and niacin offered almost complete protection against the lung fibrosis in a multidose BL hamster model. The mechanisms for the protective effect of taurine and niacin are multifaceted. These include the ability of taurine to scavenge HOCl and stabilize the biomembrane; niacin's ability to replenish the BL-induced depletion of NAD and ATP; and the combined effect of taurine and niacin to suppress all aspects of BL-induced increases in the lung collagen reactivity, a hallmark of interstitial pulmonary fibrosis. It was concluded from the data presented at this Conference that the combined treatment with taurine and niacin, which offers a multipronged approach, will have great therapeutic potential in the intervention of the development of chemically induced interstitial lung fibrosis in animals and humans
An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides
BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides
Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.
Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase
Diazo and Diazonium DNA Cleavage Agents: Studies on Model Systems and Natural Product Mechanisms of Action
Cold Stress Tolerance in Psychrotolerant Soil Bacteria and Their Conferred Chilling Resistance in Tomato (Solanum lycopersicum Mill.) under Low Temperatures
Microbial Life in Supraglacial Environments
Supraglacial environments occupy 11% of Earth’s surface area and represent a critical interface between climate and ice. This century has brought a renewed appreciation that glacier surfaces represent a collective of diverse microbial niches which occur wherever sufficient liquid water is available to support microbial activity: even at the microscopic scales of ice crystal boundaries within the crystalline matrices of snow or glacial ice. Within this chapter, we review the range of microbial habitats associated with snowpacks, the glacial ice photic zone, and phototrophic microbial biofilms formed by supraglacial algae or by the darkening of microbe–mineral aggregates known as cryoconite. In summary, glacier surfaces are home to surprisingly biodiverse and active microbial communities despite their low temperatures and austere conditions. Consequently, microbial communities and their processes are interposed between climate and ice and merit urgent consideration in the light of the effects of climate warming on Earth’s supraglacial environments
