83 research outputs found

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    VCU: The Three Dimensions of Reuse

    Get PDF
    International audienceReuse, enabled by modularity and interfaces, is one of the most important concepts in software engineering. This is evidenced by an increasingly large number of reusable artifacts, ranging from small units such as classes to larger, more sophisticated units such as components, services, frameworks, software product lines, and concerns. This paper presents evidence that a canonical set of reuse interfaces has emerged over time: the variation, customization, and usage interfaces (VCU). A reusable artifact that provides all three interfaces reaches the highest potential of reuse, as it explicitly exposes how the artifact can be manipulated during the reuse process along these three dimensions. We demonstrate the wide applicability of the VCU interfaces along two axes: across abstraction layers of a system specification and across existing reuse techniques. The former is shown with the help of a comprehensive case study including reusable requirements, software, and hardware models for the authorization domain. The latter is shown with a discussion on how the VCU interfaces relate to existing reuse techniques
    corecore