1,249 research outputs found
Field Theory for a Deuteron Quantum Liquid
Based on general symmetry principles we study an effective Lagrangian for a
neutral system of condensed spin-1 deuteron nuclei and electrons, at
greater-than-atomic but less-than-nuclear densities. We expect such matter to
be present in thin layers within certain low-mass brown dwarfs. It may also be
produced in future shock-wave-compression experiments as an effective fuel for
laser induced nuclear fusion. We find a background solution of the effective
theory describing a net spin zero condensate of deuterons with their spins
aligned and anti-aligned in a certain spontaneously emerged preferred
direction. The spectrum of low energy collective excitations contains two spin
waves with linear dispersions -- like in antiferromagnets -- as well as gapped
longitudinal and transverse modes related to the Meissner effect -- like in
superconductors. We show that counting of the Nambu-Goldstone modes of
spontaneously broken internal and space-time symmetries obeys, in a nontrivial
way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We
discuss thermodynamic properties of the condensate, and its potential
manifestation in the low-mass brown dwarfs.Comment: 19 LaTeX pages; v2: 2 refs added, JHEP versio
Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring
We argue that the Weyl coordinates and the rod-structure employed to
construct static axisymmetric solutions in higher dimensional Einstein gravity
can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete
application of the general formalism, we present numerical evidence for the
existence of static black ring solutions in Einstein-Gauss-Bonnet theory in
five spacetime dimensions. They approach asymptotically the Minkowski
background and are supported against collapse by a conical singularity in the
form of a disk. An interesting feature of these solutions is that the
Gauss-Bonnet term reduces the conical excess of the static black rings.
Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the
static black rings exist up to a maximal value of the Gauss-Bonnet coupling
constant . Moreover, in the limit of large ring radius, the suitably
rescaled black ring maximal value of and the black string maximal
value of agree.Comment: 43 pages, 14 figure
Perturbations of Gauss-Bonnet Black Strings in Codimension-2 Braneworlds
We derive the Lichnerowicz equation in the presence of the Gauss-Bonnet term.
Using the modified Lichnerowicz equation we study the metric perturbations of
Gauss-Bonnet black strings in Codimension-2 Braneworlds.Comment: 26 pages, no figures, clarifying comments and one reference added, to
be published in JHE
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
Dipole Coupling Effect of Holographic Fermion in the Background of Charged Gauss-Bonnet AdS Black Hole
We investigate the holographic fermions in the charged Gauss-Bonnet
black hole background with the dipole coupling between fermion and gauge field
in the bulk. We show that in addition to the strength of the dipole coupling,
the spacetime dimension and the higher curvature correction in the gravity
background also influence the onset of the Fermi gap and the gap distance. We
find that the higher curvature effect modifies the fermion spectral density and
influences the value of the Fermi momentum for the appearance of the Fermi
surface. There are richer physics in the boundary fermion system due to the
modification in the bulk gravity.Comment: 16 pages, accepted for publication in JHE
The Rich Structure of Gauss-Bonnet Holographic Superconductors
We study fully backreacting, Gauss-Bonnet (GB) holographic superconductors in
5 bulk spacetime dimensions. We explore the system's dependence on the scalar
mass for both positive and negative GB coupling, . We find that when
the mass approaches the Breitenlohner-Freedman (BF) bound and
the effect of backreaction is to increase the
critical temperature, , of the system: the opposite of its effect in the
rest of parameter space. We also find that reducing below zero
increases and that the effect of backreaction is diminished. We study the
zero temperature limit, proving that this system does not permit regular
solutions for a non-trivial, tachyonic scalar field and constrain possible
solutions for fields with positive masses. We investigate singular, zero
temperature solutions in the Einstein limit but find them to be incompatible
with the concept of GB gravity being a perturbative expansion of Einstein
gravity. We study the conductivity of the system, finding that the inclusion of
backreaction hinders the development of poles in the conductivity that are
associated with quasi-normal modes approaching the real axis from elsewhere in
the complex plane.Comment: 26 pages, 11 figures, V3, Added discussion of non-tachyonic scalars,
alterations to figures and tex
Shaping black holes with free fields
Starting from a metric Ansatz permitting a weak version of Birkhoff's theorem
we find static black hole solutions including matter in the form of free scalar
and p-form fields, with and without a cosmological constant \Lambda. Single
p-form matter fields permit multiple possibilities, including dyonic solutions,
self-dual instantons and metrics with Einstein-Kaelher horizons. The inclusion
of multiple p-forms on the other hand, arranged in a homogeneous fashion with
respect to the horizon geometry, permits the construction of higher dimensional
dyonic p-form black holes and four dimensional axionic black holes with flat
horizons, when \Lambda<0. It is found that axionic fields regularize black hole
solutions in the sense, for example, of permitting regular -- rather than
singular -- small mass Reissner-Nordstrom type black holes. Their cosmic string
and Vaidya versions are also obtained.Comment: 38 pages. v2: minor changes, published versio
Structure and mechanism of human DNA polymerase η
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
High star formation rates as the origin of turbulence in early and modern disk galaxies
High spatial and spectral resolution observations of star formation and
kinematics in early galaxies have shown that two-thirds are massive rotating
disk galaxies with the remainder being less massive non-rotating objects. The
line of sight averaged velocity dispersions are typically five times higher
than in today's disk galaxies. This has suggested that
gravitationally-unstable, gas-rich disks in the early Universe are fuelled by
cold, dense accreting gas flowing along cosmic filaments and penetrating hot
galactic gas halos. However these accreting flows have not been observed, and
cosmic accretion cannot power the observed level of turbulence. Here we report
on a new sample of rare high-velocity-dispersion disk galaxies we have
discovered in the nearby Universe where cold accretion is unlikely to drive
their high star-formation rates. We find that the velocity dispersion is most
fundamentally correlated with their star-formation rates, and not their mass
nor gas fraction, which leads to a new picture where star formation itself is
the energetic driver of galaxy disk turbulence at all cosmic epochs.Comment: 9 pages, 2 figures, Supplimentary Info available at:
http://pulsar.swin.edu.au/~agreen/nature/sigma_mean_arXiv.pdf. Accepted for
publication in Natur
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
- …
