1,058 research outputs found
Spectrum of Higher Derivative 6D Chiral Supergravity
Gauged off-shell Maxwell-Einstein supergravity in six dimensions with N=(1,0)
supersymmetry has a higher derivative extension afforded by a supersymmetrized
Riemann squared term. This theory admits a supersymmetric Minkowski x S^2
compactification with a U(1) monopole of unit charge on S^2. We determine the
full spectrum of the theory on this background. We also determine the spectrum
on a non-supersymmetric version of this compactification in which the monopole
charge is different from unity, and we find the peculiar feature that there are
massless gravitini in a representation of the S^2 isometry group determined by
the monopole charge.Comment: typos correcte
Lovelock-Lifshitz Black Holes
In this paper, we investigate the existence of Lifshitz solutions in Lovelock
gravity, both in vacuum and in the presence of a massive vector field. We show
that the Lovelock terms can support the Lifshitz solution provided the
constants of the theory are suitably chosen. We obtain an exact black hole
solution with Lifshitz asymptotics of any scaling parameter in both
Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the
form of a massive vector field, we also show that Lifshitz solutions in
Lovelock gravity exist; these can be regarded as corrections to Einstein
gravity coupled to this form of matter. For this form of matter we numerically
obtain a broad range of charged black hole solutions with Lifshitz asymptotics,
for either sign of the cosmological constant. We find that these asymptotic
Lifshitz solutions are more sensitive to corrections induced by Lovelock
gravity than are their asymptotic AdS counterparts. We also consider the
thermodynamics of the black hole solutions and show that the temperature of
large black holes with curved horizons is proportional to where is
the critical exponent; this relationship holds for black branes of any size. As
is the case for asymptotic AdS black holes, we find that an extreme black hole
exists only for the case of horizons with negative curvature. We also find that
these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the
Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black
holes with Ricci-flat horizons.Comment: 26 pages, 10 figures, a few references added, typo fixed and some
comments have been adde
Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method
We investigate the use of a hybrid nanoresonator comprising a photonic crystal (PhC) cavity coupled to a plasmonic bowtie nanoantenna (BNA) for the optical trapping of nanoparticles in water. Using finite difference time-domain simulations, we show that this structure can confine light to an extremely small volume of ~30,000 nm3 (~30 zl) in the BNA gap whilst maintaining a high quality factor (5400–7700). The optical intensity inside the BNA gap is enhanced by a factor larger than 40 compared to when the BNA is not present above the PhC cavity. Such a device has potential applications in optical manipulation, creating high precision optical traps with an intensity gradient over a distance much smaller than the diffraction limit, potentially allowing objects to be confined to much smaller volumes and making it ideal for optical trapping of Rayleigh particles (particles much smaller than the wavelength of light)
AMPK:a nutrient and energy sensor that maintains energy homeostasis
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability
Levels of DNA methylation vary at CpG sites across the BRCA1 promoter, and differ according to triple negative and "BRCA-like" status, in both blood and tumour DNA
Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is
often associated with loss of function of the BRCA1 gene, either through mutation, loss of
heterozygosity or methylation. This study aimed to measure methylation of the BRCA1
gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess
whether levels were correlated between different tissues, and with triple negative receptor
status, histopathological scoring for BRCA-like features and BRCA1 protein expression.
Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of
11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly
higher in triple negative tumours, and in tumours with high BRCA-like histopathological
scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were
observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively).
This study provides insight into the pattern of CpG methylation across the BRCA1
promoter, and supports previous studies suggesting that tumours with BRCA1 promoter
methylation have similar features to those with BRCA1 mutations, and therefore may be
suitable for the same targeted therapies
Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript
Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Recommended from our members
Motives and comprehension in a public goods game with induced emotions
This study analyses the sensitivity of public goods contributions through the lens of psychological motives. We report the results of a public goods experiment in which subjects were induced with the motives of care and anger through autobiographical recall. Subjects' preferences, beliefs, and perceptions under each motive are compared with those of subjects experiencing a neutral autobiographical recall control condition. We find, but only for those subjects with the highest comprehension of the game, that care elicits significantly higher contributions than anger, with the control treatment in between. This positive influence of the care motive on unconditional giving is accounted for partly by preferences for giving and partly by the beliefs concerning greater contributions by others. Anger also affects attention to own and other's payoffs (using mouse tracking) and perceptions of the game's incentive structure (cooperative or competitive)
RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance.
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated
- …
