291 research outputs found
All-Optical Ultrafast Control and Read-Out of a Single Negatively Charged Self-Assembled InAs Quantum Dot
We demonstrate the all-optical ultrafast manipulation and read-out of optical
transitions in a single negatively charged self-assembled InAs quantum dot, an
important step towards ultrafast control of the resident spin. Experiments
performed at zero magnetic field show the excitation and decay of the trion
(negatively charged exciton) as well as Rabi oscillations between the electron
and trion states. Application of a DC magnetic field perpendicular to the
growth axis of the dot enables observation of a complex quantum beat structure
produced by independent precession of the ground state electron and the excited
state heavy hole spins
Recommended from our members
Utilisation of prophylactic mastectomy in 10 European centers
ABSTRACT:
Increasingly women at high risk of
breast cancer are opting for prophylactic surgery to
reduce their risks. Data from 10 European centres that
offer a risk counselling and screening service to
women at risk show different approaches to the option
of preventive surgery, although most centres adhere to
a protocol including at least two risk counselling
sessions and a psychological assessment. Thus far the
combined centres have data on 174 women who have
undergone prophylactic mastectomy with in excess of
400 women years of follow up. Operations were
carried out on women with lifetime risks of 25–80%,
with an average annual expected incidence rate of 1%
per women. No breast cancers have occurred in this
cohort. Long term follow up on an extended group of
women will be necessary to truly address the risk of
subsequent breast cancer and the psychological
sequelae
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Predicting change in quality of life from age 79 to 90 in the Lothian Birth Cohort 1921
Purpose: Quality of life (QoL) decreases in very old age, and is strongly related to health outcomes and mortality. Understanding the predictors of QoL and change in QoL amongst the oldest old may suggest potential targets for intervention. This study investigated change in QoL from age 79 to 90 years in a group of older adults in Scotland, and identified potential predictors of that change.
Method: Participants were members of the Lothian Birth Cohort 1921 who attended clinic visits at age 79 (n = 554) and 90 (n = 129). Measures at both time points included QoL (WHOQOL-BREF: four domains and two single items), anxiety and depression, objective health, functional ability, self-rated health, loneliness, and personality.
Results: Mean QoL declined from age 79 to 90. Participants returning at 90 had scored significantly higher at 79 on most QoL measures, and exhibited better objective health and functional ability, and lower anxiety and depression than non-returners. Hierarchical multiple regression models accounted for 20.3–56.3% of the variance in QoL at age 90. Baseline QoL was the strongest predictor of domain scores (20.3–35.6% variance explained), suggesting that individual differences in QoL judgements remain largely stable. Additional predictors varied by the QoL domain and included self-rated health, loneliness, and functional and mood decline between age 79 and 90 years.
Conclusions: This study has identified potential targets for interventions to improve QoL in the oldest old. Further research should address causal pathways between QoL and functional and mood decline, perceived health and loneliness
Slower is not always better: Response-time evidence clarifies the limited role of miserly information processing in the Cognitive Reflection Test
We report a study examining the role of `cognitive miserliness' as a determinant of poor performance on the standard three-item Cognitive Reflection Test (CRT). The cognitive miserliness hypothesis proposes that people often respond incorrectly on CRT items because of an unwillingness to go beyond default, heuristic processing and invest time and effort in analytic, reflective processing. Our analysis (N = 391) focused on people's response times to CRT items to determine whether predicted associations are evident between miserly thinking and the generation of incorrect, intuitive answers. Evidence indicated only a weak correlation between CRT response times and accuracy. Item-level analyses also failed to demonstrate predicted response time differences between correct analytic and incorrect intuitive answers for two of the three CRT items. We question whether participants who give incorrect intuitive answers on the CRT can legitimately be termed cognitive misers and whether the three CRT items measure the same general construct
Refractile superficial retinal crystals and chronic retinal detachment: Case report
BACKGROUND: Few previous reports have described the presence of retinal refractile opacities at the macular area in patients presenting with longstanding peripheral retinal detachment. The exact nature of these opacities is unknown. CASE PRESENTATION: Two patients were referred with an abnormal appearance of refractile opacities in the macular area noted during routine examination. Both were found to have longstanding peripheral retinal detachments. Subretinal fluid analysis of one patient revealed the presence of multiple birefringent crystals. We hypothesise that these crystals are the origin of the refractile macular opacities noted. CONCLUSION: This report describes the rare presentation of asymptomatic peripheral retinal detachment by the detection of refractile macular opacities on routine examination. It highlights the importance of meticulous peripheral retinal examination in these cases. The article also describes the findings of the subretinal fluid analysis and discusses the possible hypothesis behind their appearance
Duration of residence and psychotropic drug use in recently settled refugees in Sweden - a register-based study
Constructing majority-rule supertrees
<p>Abstract</p> <p>Background</p> <p>Supertree methods combine the phylogenetic information from multiple partially-overlapping trees into a larger phylogenetic tree called a supertree. Several supertree construction methods have been proposed to date, but most of these are not designed with any specific properties in mind. Recently, Cotton and Wilkinson proposed extensions of the majority-rule consensus tree method to the supertree setting that inherit many of the appealing properties of the former.</p> <p>Results</p> <p>We study a variant of one of Cotton and Wilkinson's methods, called majority-rule (+) supertrees. After proving that a key underlying problem for constructing majority-rule (+) supertrees is NP-hard, we develop a polynomial-size exact integer linear programming formulation of the problem. We then present a data reduction heuristic that identifies smaller subproblems that can be solved independently. While this technique is not guaranteed to produce optimal solutions, it can achieve substantial problem-size reduction. Finally, we report on a computational study of our approach on various real data sets, including the 121-taxon, 7-tree Seabirds data set of Kennedy and Page.</p> <p>Conclusions</p> <p>The results indicate that our exact method is computationally feasible for moderately large inputs. For larger inputs, our data reduction heuristic makes it feasible to tackle problems that are well beyond the range of the basic integer programming approach. Comparisons between the results obtained by our heuristic and exact solutions indicate that the heuristic produces good answers. Our results also suggest that the majority-rule (+) approach, in both its basic form and with data reduction, yields biologically meaningful phylogenies.</p
Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses
Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1 strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals
Direct Observation of Single Amyloid-β(1-40) Oligomers on Live Cells: Binding and Growth at Physiological Concentrations
Understanding how amyloid-β peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric Aβ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high Aβ concentrations required for most biochemical analyses, the metastable nature of Aβ aggregates, and the complex variety of Aβ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small Aβ(1-40) oligomers bind to living neuroblastoma cells at physiological Aβ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound Aβ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound Aβ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary Aβ species that interact with neurons at physiological concentrations
- …
