3,682 research outputs found
Recommended from our members
Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment
Recommended from our members
Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring
Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring
Aircraft measurements of ozone (O3) and its precursors (reactive nitrogen, CO, nonmethane hydrocarbons) were made over the western Pacific during the Transport and Chemical Evolution Over the Pacific (TRACE-P) campaign, which was conducted during February-April 2001. Biomass burning activity was high over Southeast Asia (SEA) during this period (dry season), and convective activity over SEA frequently transported air from the boundary layer to the free troposphere, followed by eastward transport to the sampling region over the western Pacific south of 30°N. This data set allows for systematic investigations of the chemical and physical processes in the outflow from SEA. Methyl chloride (CH3Cl) and CO are chosen as primary and secondary tracers, respectively, to gauge the degree of the impact of emissions of trace species from biomass burning. Biomass burning is found to be a major source of reactive nitrogen (NO x, PAN, HNO3, and nitrate) and O3 in this region from correlations of these species with the tracers. Changes in the abundance of reactive nitrogen during upward transport are quantified from the altitude change of the slopes of the correlations of these species with CO. NOx decreased with altitude due to its oxidation to HNO3. On the other hand, PAN was conserved during transport from the lower to the middle troposphere, consistent with its low water solubility and chemical stability at low temperatures. Large losses of HNO3 and nitrate, which are highly water soluble, occurred in the free troposphere, most likely due to wet removal by precipitation. This has been shown to be the major pathway of NOy loss in the middle troposphere. Increases in the mixing ratios of O3 and its precursors due to biomass burning in SEA are estimated using the tracers. Enhancements of CO and total reactive nitrogen (NOy), which are directly emitted from biomass burning, were largest at 2-4 km. At this altitude the increases in NOy and O3 were 810 parts per trillion by volume (pptv) and 26 parts per billion by volume (ppbv) above their background values of 240 pptv and 31 ppbv, respectively. The slope of the O3-CO correlation in biomass burning plumes was similar to those observed in fire plumes in northern Australia, Africa, and Canada. The O3 production efficiency (OPE) derived from the O3-CO slope and NOx/CO emission ratio (ER) is shown to be positively correlated with the C2H4 /NOx ER, indicating that the C2H4/NO x ER is a critical parameter in determining the OPE. Comparison of the net O3 flux across the western Pacific region and total O3 production due to biomass burning in SEA suggests that about 70% of O3 produced was transported to the western Pacific. Copyright 2004 by the American Geophysical Union
Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
Production of a chromium Bose-Einstein condensate
The recent achievement of Bose-Einstein condensation of chromium atoms [1]
has opened longed-for experimental access to a degenerate quantum gas with
long-range and anisotropic interaction. Due to the large magnetic moment of
chromium atoms of 6 {}B, in contrast to other Bose- Einstein condensates
(BECs), magnetic dipole-dipole interaction plays an important role in a
chromium BEC. Many new physical properties of degenerate gases arising from
these magnetic forces have been predicted in the past and can now be studied
experimentally. Besides these phenomena, the large dipole moment leads to a
breakdown of standard methods for the creation of a chromium BEC. Cooling and
trapping methods had to be adapted to the special electronic structure of
chromium to reach the regime of quantum degeneracy. Some of them apply
generally to gases with large dipolar forces. We present here a detailed
discussion of the experimental techniques which are used to create a chromium
BEC and alow us to produce pure condensates with up to {} atoms in an
optical dipole trap. We also describe the methods used to determine the
trapping parameters.Comment: 17 pages, 9 figure
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
Ageing and entrepreneurial preferences
Previous research on age and entrepreneurship assumed homogeneity and downplayed age-related differences in the motives and aims underlying enterprising behaviour. We argue that the heterogeneity of entrepreneurship influences how the level of entrepreneurial activity varies with age. Using a sample of 2566 respondents from 27 European countries we show that entrepreneurial activity increases almost linearly with age for individuals who prefer to only employ themselves (self-employers), whereas it increases up to a critical threshold age (late 40s) and decreases thereafter for those who aspire to hire workers (owner-managers). Age has a considerably smaller effect on entrepreneurial behaviour for those who do not prefer self-employment but are pushed into it by lack of alternative employment opportunities (reluctant entrepreneurs). Our results question the conventional wisdom that entrepreneurial activity declines with age and suggest that effective responses to demographic changes require policy makers to pay close attention to the heterogeneity of entrepreneurial preferences
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
