8,219 research outputs found

    Magnetomechanical performance of directionally solidified Fe-Ga alloys

    Get PDF
    Iron-gallium alloys can produce magnetostrictions of ~400 ppm and might serve as mechanically robust actuator/sensing materials. However, for polycrystalline Fe-Ga alloys, the magnetostrictive performance decreases with the increasing deviations from the ideal <100> texture. In this paper, three directionally solidified Fe-Ga alloys with gallium contents of 17, 18.4, and 19.5 at. % were characterized at ambient temperature. These specimens exhibit high d33 and magnetic permeability when subjected to applied magnetic fields, indicating their suitability for light weight actuator applications but not for high force applications due to their low saturation magnetostriction and hence low blocking force. All the alloys produce significant changes in magnetization, around 0.7Ms-0.8Ms when subjected to cyclic compressive stresses of 51 MPa, making them promising candidate materials for sensing and energy harvesting applications. However, eddy current effects may easily become a problem when such materials are subjected to a high frequency vibration or magnetic field due to their intrinsic high magnetic permeability

    Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire

    Get PDF
    Stress and its effects on optical properties of GaN epilayers grown in Si(111), 6H-SiC(0001), and c-plane sapphire were investigated. Large tensile stress was present in GaN epilayers grown on Si and 6H-SiC, and a small compressive stress appeared in the film grown on sapphire. The results showed that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films.published_or_final_versio

    Can interference patterns in the reflectance spectra of GaN epilayers give important information of carrier concentration?

    Get PDF
    Low-temperature reflectance spectra of a series of Si-doped GaN epilayers with different doping concentrations grown on sapphire by metal-organic chemical vapour deposition were measured. In addition to the excitonic polariton resonance structures at the band edge, interference oscillating patterns were observed in the energy region well below the band gap. The amplitudes of these oscillation patterns show a distinct dependence on the doping concentrations of the samples. From the thin-film optical interference principle, an approach connecting the amplitude of the interference oscillations and the impurity scattering was established. Good agreement between experiment and theory is achieved. © 2012 American Institute of Physics.published_or_final_versio

    Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au/GaN Schottky contacts

    Get PDF
    Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of AuGaN Schottky contacts

    Get PDF
    Under identical preparation conditions, AuGaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. © 2006 American Institute of Physics.published_or_final_versio

    Quantum dissipation and broadening mechanisms due to electron-phonon interactions in self-formed InGaN quantum dots

    Get PDF
    Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be ∼0.2 and 200 cm-1, respectively, for the InGaN QDs. © 2006 American Institute of Physics.published_or_final_versio

    Influence of indium-tin-oxide thin-film quality on reverse leakage current of indium-tin-oxide/n-GaN Schottky contacts

    Get PDF
    Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid

    Get PDF
    Coaxial electrospraying was explored to organize polymer excipients in a core-shell manner for providing biphasic controlled release of active ingredient. With ferulic acid (FA) as a model drug, and shellac and polyvinylpyrrolidone (PVP) as the core and shell polymeric matrices, core-shell nanoparticles were successfully fabricated. A series of tests were carried out to characterize the prepared core-shell nanoparticles and also the nanoparticles prepared using a single fluid electrospraying of the shell or core fluids alone. The core-shell nanoparticles had an average diameter of 530 ± 80 nm with clear core-shell structure. The contained FA was converted to an amorphous state both in the core and the shell parts due to the favorable hydrogen bonding between the components. In vitro dissolution tests demonstrated that the core-shell nanoparticles were able to provide the desired biphasic drug-controlled release profiles. Coaxial electrospraying is a useful tool for the development of novel nanodrug delivery systems from polymers

    Violet electroluminescence of AlInGaN-InGaN multiquantum-well light-emitting diodes: Quantum-confined stark effect and heating effect

    Get PDF
    Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail. © 2007 IEEE.published_or_final_versio

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
    corecore