740 research outputs found

    Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering

    Full text link
    Polarized deep--inelastic scattering data on longitudinally polarized hydrogen and deuterium targets have been used to determine double spin asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for the production of positive and negative pions from hydrogen were obtained in a re--analysis of previously published data. Inclusive and semi--inclusive asymmetries for the production of negative and positive pions and kaons were measured on a polarized deuterium target. The separate helicity densities for the up and down quarks and the anti--up, anti--down, and strange sea quarks were computed from these asymmetries in a ``leading order'' QCD analysis. The polarization of the up--quark is positive and that of the down--quark is negative. All extracted sea quark polarizations are consistent with zero, and the light quark sea helicity densities are flavor symmetric within the experimental uncertainties. First and second moments of the extracted quark helicity densities in the measured range are consistent with fits of inclusive data

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Evidence for a narrow |S|=1 baryon state at a mass of 1528 MeV in quasi-real photoproduction

    Get PDF
    Evidence for a narrow baryon state is found in quasi-real photoproduction on a deuterium target through the decay channel p K^0_S --> p pi^+ pi^-. A peak is observed in the p K^0_S invariant mass spectrum at 1528 +/- 2.6 (stat) +/-2.1 (syst) MeV. Depending on the background model,the naive statistical significance of the peak is 4--6 standard deviations and its width may be somewhat larger than the experimental resolution of sigma=4.3 -- 6.2 MeV. This state may be interpreted as the predicted S=+1 exotic Theta^{+}(uuddbar(s)) pentaquark baryon. No signal for an hypothetical Theta^{++} baryon was observed in the pK^+ invariant mass distribution. The absence of such a signal indicates that an isotensor Theta is excluded and an isovector Theta is unlikely.Comment: 8 pages, 4 figure

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Fast-TIPL Occurs for Salient Images without a Memorization Requirement in Men but Not in Women

    Get PDF
    Recent research of task-irrelevant perceptual learning (TIPL) demonstrates that stimuli that are consistently presented at relevant point in times (e.g. with task-targets or rewards) are learned, even in the absence of attention to these stimuli. However, different research paradigms have observed different results for how salient stimuli are learned; with some studies showing no learning, some studies showing positive learning and others showing negative learning effects. In this paper we focused on how the level of processing of stimuli impacts fast-TIPL. We conducted three different experiments in which the level of processing of the information paired with a target was manipulated. Our results indicated that fast-TIPL occurs when participants have to memorize the information presented with the target, but also when they just have to process this information for a secondary task without an explicit memorization of those stimuli. However, fast-TIPL does not occur when participants have to ignore the target-paired information. This observation is consistent with recent models of TIPL that suggest that attentional signals can either enhance or suppress learning depending on whether those stimuli are distracting or not to the subjects' objectives. Our results also revealed a robust gender effect in fast-TIPL, where male subjects consistently show fast-TIPL, whereas the observation of fast-TIPL is inconsistent in female subjects

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe
    corecore