162 research outputs found

    Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies

    Get PDF
    The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer’s disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic–ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD

    Conformational changes during pore formation by the perforin-related protein pleurotolysin

    Get PDF
    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ~70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function

    Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling

    Get PDF
    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches

    Is bisphosphonate therapy for benign bone disease associated with impaired dental healing? A case-controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonates are common first line medications used for the management of benign bone disease. One of the most devastating complications associated with bisphosphonate use is osteonecrosis of the jaws which may be related to duration of exposure and hence cumulative dose, dental interventions, medical co-morbidities or in some circumstances with no identifiable aggravating factor. While jaw osteonecrosis is a devastating outcome which is currently difficult to manage, various forms of delayed dental healing may be a less dramatic and, therefore, poorly-recognised complications of bisphosphonate use for the treatment of osteoporosis. It is hypothesised that long-term (more than 1 year's duration) bisphosphonate use for the treatment of post-menopausal osteoporosis or other benign bone disease is associated with impaired dental healing.</p> <p>Methods/Design</p> <p>A case-control study has been chosen to test the hypothesis as the outcome event rate is likely to be very low. A total of 54 cases will be recruited into the study following review of all dental files from oral and maxillofacial surgeons and special needs dentists in Victoria where potential cases of delayed dental healing will be identified. Potential cases will be presented to an independent case adjudication panel to determine if they are definitive delayed dental healing cases. Two hundred and fifteen controls (1:4 cases:controls), matched for age and visit window period, will be selected from those who have attended local community based referring dental practices. The primary outcome will be the incidence of delayed dental healing that occurs either spontaneously or following dental treatment such as extractions, implant placement, or denture use.</p> <p>Discussion</p> <p>This study is the largest case-controlled study assessing the link between bisphosphonate use and delayed dental healing in Australia. It will provide invaluable data on the potential link between bisphosphonate use and osteonecrosis of the jaws.</p

    Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia cenocepacia </it>is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic <it>B. cenocepacia </it>strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant.</p> <p>Results</p> <p>A heptoseless LPS mutant of <it>B. cenocepacia </it>was passaged through multiple rounds of selection to regain high levels of polymyxin B-resistance. This process resulted in various phenotypic changes in the isolate that could contribute to polymyxin B resistance and are consistent with LPS-independent changes in the outer membrane. The transcriptional response of three <it>B. cenocepacia </it>strains to subinhibitory concentrations of polymyxin B was analyzed using microarray analysis and validated by quantitative Real Time-PCR. There were numerous baseline changes in expression between the three strains in the absence of polymyxin B. In both K56-2 and RSF34, similar transcriptional changes upon treatment with polymyxin B were found and included upregulation of various genes that may be involved in polymyxin B resistance and downregulation of genes required for the synthesis and operation of flagella. This last result was validated phenotypically as both swimming and swarming motility were impaired in the presence of polymyxin B. RSF34 4000B had altered the expression in a larger number of genes upon treatment with polymyxin B than either K56-2 or RSF34, but the relative fold-changes in expression were lower.</p> <p>Conclusions</p> <p>It is possible to generate polymyxin B-resistant isolates from polymyxin B-sensitive mutant strains of <it>B. cenocepacia</it>, likely due to the multifactorial nature of polymyxin B resistance of this bacterium. Microarray analysis showed that <it>B. cenocepacia </it>mounts multiple transcriptional responses following exposure to polymyxin B. Polymyxin B-regulated genes identified in this study may be required for polymyxin B resistance, which must be tested experimentally. Exposure to polymyxin B also decreases expression of flagellar genes resulting in reduced swimming and swarming motility.</p

    The limitations of employment as a tool for social inclusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One important component of social inclusion is the improvement of well-being through encouraging participation in employment and work life. However, the ways that employment contributes to wellbeing are complex. This study investigates how poor health status might act as a barrier to gaining good quality work, and how good quality work is an important pre-requisite for positive health outcomes.</p> <p>Methods</p> <p>This study uses data from the PATH Through Life Project, analysing baseline and follow-up data on employment status, psychosocial job quality, and mental and physical health status from 4261 people in the Canberra and Queanbeyan region of south-eastern Australia. Longitudinal analyses conducted across the two time points investigated patterns of change in employment circumstances and associated changes in physical and mental health status.</p> <p>Results</p> <p>Those who were unemployed and those in poor quality jobs (characterised by insecurity, low marketability and job strain) were more likely to remain in these circumstances than to move to better working conditions. Poor quality jobs were associated with poorer physical and mental health status than better quality work, with the health of those in the poorest quality jobs comparable to that of the unemployed. For those who were unemployed at baseline, pre-existing health status predicted employment transition. Those respondents who moved from unemployment into poor quality work experienced an increase in depressive symptoms compared to those who moved into good quality work.</p> <p>Conclusions</p> <p>This evidence underlines the difficulty of moving from unemployment into good quality work and highlights the need for social inclusion policies to consider people's pre-existing health conditions and promote job quality.</p
    corecore