17,313 research outputs found

    Low-mass Star Formation: Observations

    Full text link
    I briefly review recent observations of regions forming low mass stars. The discussion is cast in the form of seven questions that have been partially answered, or at least illuminated, by new data. These are the following: where do stars form in molecular clouds; what determines the IMF; how long do the steps of the process take; how efficient is star formation; do any theories explain the data; how are the star and disk built over time; and what chemical changes accompany star and planet formation. I close with a summary and list of open questions.Comment: Proceedings of Computational Star Formation Conference, Barcelon

    The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    Get PDF
    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P. Schuecker, G. W. Pratt, and A. Finogueno

    Radio Triggered Star Formation in Cooling Flows

    Full text link
    The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star formation. In some instances, star formation appears to have been triggered by the galaxy's radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star formation for durations much less than 1 Gyr, which is less than the presumed ages of cooling flows. The star formation properties are inconsistent with fueling by a continuously accreting cooling flow, although the prevalence of star formation is consistent with repeated bursts and periodic refueling. Star formation may be fueled, in some cases, by cold material stripped from neighboring cluster galaxies

    Shaped nozzles for cryogenic buffer gas beam sources

    Get PDF
    Cryogenic buffer gas beams are important sources of cold molecules. In this work we explore the use of a converging-diverging nozzle with a buffer-gas beam. We find that, under appropriate circumstances, the use of a nozzle can produce a beam with improved collimation, lower transverse temperatures, and higher fluxes per solid angle

    Chandra observations of Abell 2199

    Get PDF
    We present results from an analysis of two Chandra observations of the rich, nearby galaxy cluster Abell 2199. We find evidence (having corrected for projection effects) for radial gradients in temperature and metallicity in the X-ray emitting gas: the temperature drops from kT~4.2 keV at R=200 kpc to 1.6 keV within R=5 kpc of the centre. The metallicity rises from ~0.3 solar at R=200 kpc to ~0.7 solar at R=30 kpc before dropping to 0.3 solar within the central 5 kpc. We find evidence for structure in the surface brightness distribution associated with the central radio source 3C338. No evidence is found for the gas having a large spread in temperature at any particular location despite the cooling time being short (<10**9yr) within the central ~15 kpc. Heating and mass cooling rates are calculated for various assumptions about the state of the gas.Comment: 10 pages, 12 figures. Accepted by MNRAS. Minor changes following referee's comment

    Conformal Field Theory Correlators from Classical Field Theory on Anti-de Sitter Space II. Vector and Spinor Fields

    Get PDF
    We use the AdS/CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.Comment: 14 pages, LaTeX2e with amsmath,amsfonts packages; v2:interactions section corrected, reference adde
    corecore