6,328 research outputs found
A DISPLACED SUPERMASSIVE BLACK HOLE IN M87
Isophotal analysis of M87, using data from the Advanced Camera for Surveys, reveals a projected displacement of 6.8 +/- 0.8 pc (similar to 0 ''.1) between the nuclear point source (presumed to be the location of the supermassive black hole, SMBH) and the photo-center of the galaxy. The displacement is along a position angle of 307 degrees +/- 17 degrees and is consistent with the jet axis. This suggests the active SMBH in M87 does not currently reside at the galaxy center of mass, but is displaced in the counter-jet direction. Possible explanations for the displacement include orbital motion of an SMBH binary, gravitational perturbations due to massive objects ( e. g., globular clusters), acceleration by an asymmetric or intrinsically one-sided jet, and gravitational recoil resulting from the coalescence of an SMBIIbinary. The displacement direction favors the latter two mechanisms. However, jet asymmetry is only viable, at the observed accretion rate, for a jet age of >0.1 Gyr and if the galaxy restoring force is negligible. This could be the case in the low-density core of M87. A moderate recoil similar to 1Myr ago might explain the disturbed nature of the nuclear gas disk, could be aligned with the jet axis, and can produce the observed offset. Alternatively, the displacement could be due to residual oscillations resulting from a large recoil that occurred in the aftermath of a major merger <= 1 Gyr ago
The SKA and "High-Resolution" Science
"High-resolution", or "long-baseline", science with the SKA and its
precursors covers a broad range of topics in astrophysics. In several research
areas, the coupling between improved brightness sensitivity of the SKA and a
sub-arcsecond resolution would uncover truly unique avenues and opportunities
for studying extreme states of matter, vicinity of compact relativistic
objects, and complex processes in astrophysical plasmas. At the same time, long
baselines would secure excellent positional and astrometric measurements with
the SKA and critically enhance SKA image fidelity at all scales. The latter
aspect may also have a substantial impact on the survey speed of the SKA, thus
affecting several key science projects of the instrument.Comment: JENAM-2010: Invited talk at JENAM session S7: The Square Kilometre
Array: Paving the way for the new 21st century radio astronomy paradigm; 9
page
Large orders in strong-field QED
We address the issue of large-order expansions in strong-field QED. Our
approach is based on the one-loop effective action encoded in the associated
photon polarisation tensor. We concentrate on the simple case of crossed fields
aiming at possible applications of high-power lasers to measure vacuum
birefringence. A simple next-to-leading order derivative expansion reveals that
the indices of refraction increase with frequency. This signals normal
dispersion in the small-frequency regime where the derivative expansion makes
sense. To gain information beyond that regime we determine the factorial growth
of the derivative expansion coefficients evaluating the first 80 orders by
means of computer algebra. From this we can infer a nonperturbative imaginary
part for the indices of refraction indicating absorption (pair production) as
soon as energy and intensity become (super)critical. These results compare
favourably with an analytic evaluation of the polarisation tensor asymptotics.
Kramers-Kronig relations finally allow for a nonperturbative definition of the
real parts as well and show that absorption goes hand in hand with anomalous
dispersion for sufficiently large frequencies and fields.Comment: 26 pages, 6 figure
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
A search for AGN in the most extreme UV-selected starbursts using the European VLBI Network
We have used the European VLBI Network (EVN) to observe a sample of Lyman
Break Analogs (LBAs), nearby (z < 0.3) galaxies with properties similar to the
more distant Lyman Break Galaxies (LBGs). The study of LBGs may help define the
feed-back relationship between black holes (BHs) and their host galaxies.
Previous VLA observations have shown that the kpc-scale radio emission from
LBAs is dominated by starbursts. The main targets of this VLBI experiment were
selected because they possessed emission-line properties between starbursts and
Type 2 (obscured) AGN. Eight targets (three star-forming LBAs, four composite
LBAs, and one Type 1 AGN) were observed at 5 GHz, four of which were also
observed at 1.7 GHz. One star-forming LBA and one composite LBA were detected
above 5 \sigma at 1.7 GHz (only), while the AGN was detected at 5 GHz. In both
LBAs, the radio luminosity (LR) exceeds that expected from supernovae
(remnants) based on a comparison with Arp220, Arp229A and Mrk273, by factors of
2 - 8. The composite LBA exhibits a compact core emitting around 10% of the VLA
flux density. The high Tb of 3.5E7 K and excess core L_R with respect to the
L_R/L_X relation of radio-quiet AGN indicate that this LBA possesses an
obscured AGN (MBH ~ E5-E7 M_sun). While weak AGN may co-exist with the
starbursts as shown in at least one of the LBAs, their contribution to the
total radio flux is fairly minimal. Our results show that the detection of such
weak AGN presents a challenge at radio, X-ray and optical emission-line
wavelengths at z ~ 0.2, indicating the great difficulties that need to be
overcome in order to study similar processes at high redshift when these types
of galaxies were common.Comment: 10 pages, 4 figures, accepted for publication in MNRA
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
- …
