7,399 research outputs found
Filament L1482 in the California molecular cloud
Aims. The process of gravitational fragmentation in the L1482 molecular
filament of the California molecular cloud is studied by combining several
complementary observations and physical estimates. We investigate the kinematic
and dynamical states of this molecular filament and physical properties of
several dozens of dense molecular clumps embedded therein.
Methods. We present and compare molecular line emission observations of the
J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the
KOSMA 3-meter telescope. These observations are complemented with archival data
observations and analyses of the 13CO J=1--0 emission obtained at the Purple
Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai
Province of west China, as well as infrared emission maps from the Herschel
Space Telescope online archive, obtained with the SPIRE and PACS cameras.
Comparison of these complementary datasets allow for a comprehensive
multi-wavelength analysis of the L1482 molecular filament.
Results. We have identified 23 clumps along the molecular filament L1482 in
the California molecular cloud. All these molecular clumps show supersonic
non-thermal gas motions. While surprisingly similar in mass and size to the
much better known Orion molecular cloud, the formation rate of high-mass stars
appears to be suppressed in the California molecular cloud relative to that in
the Orion molecular cloud based on the mass-radius threshold derived from the
static Bonnor Ebert sphere. Our analysis suggests that these molecular
filaments are thermally supercritical and molecular clumps may form by
gravitational fragmentation along the filament. Instead of being static, these
molecular clumps are most likely in processes of dynamic evolution.Comment: 10 pages, 9 figures, 2 tables, accepted to Astronomy and Astrophysic
Global Collapses and Expansions in Star-Forming Clouds
Spectral molecular line profile observations of star-forming molecular clouds
sometimes show distinct red asymmetric double-peaked molecular line profiles
with weaker blue peaks and stronger red peaks. For some star-forming molecular
clouds, such molecular transitions with red asymmetric line profiles and blue
asymmetric line profiles (i.e. blue asymmetric double-peaked molecular line
profiles with weaker red peaks and stronger blue peaks) may coexist in
spatially resolved spectral observations, while for others, such molecular
transitions with red asymmetric line profiles may completely dominate in
spatially resolved spectral observations. Blue asymmetric line profiles are
usually interpreted as signals of central core collapses, while red asymmetric
line profiles remain unexplained. In this paper, we advance a spherically
symmetric self-similar hydrodynamic model framework for envelope expansions
with core collapses (EECC) of a general polytropic molecular gas cloud under
self-gravity. Based on such EECC hydrodynamic cloud models, we perform tracer
molecular line profile calculations using the publicly available RATRAN code
for star-forming clouds with spectroscopic signatures of red asymmetric line
profiles. The presence of red asymmetric line profiles from molecular cloud
cores indicates that EECC processes are most likely an essential hydrodynamic
process of star formation. With spatial distributions, we explore various
profiles of molecular lines for several tracer molecules in different settings
of EECC dynamic models with and without shocks.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Immuno-Efficacy of a T. gondii Secreted Protein with an Altered Thrombospondin Repeat (TgSPATR) As a Novel DNA Vaccine Candidate against Acute Toxoplasmosis in BALB/c Mice
On the direct insulator-quantum Hall transition in two-dimensional electron systems in the vicinity of nanoscaled scatterers.
A direct insulator-quantum Hall (I-QH) transition corresponds to a crossover/transition from the insulating regime to a high Landau level filling factor ν > 2 QH state. Such a transition has been attracting a great deal of both experimental and theoretical interests. In this study, we present three different two-dimensional electron systems (2DESs) which are in the vicinity of nanoscaled scatterers. All these three devices exhibit a direct I-QH transition, and the transport properties under different nanaoscaled scatterers are discussed.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Second-order -regularity in nonlinear elliptic problems
A second-order regularity theory is developed for solutions to a class of
quasilinear elliptic equations in divergence form, including the -Laplace
equation, with merely square-integrable right-hand side. Our results amount to
the existence and square integrability of the weak derivatives of the nonlinear
expression of the gradient under the divergence operator. This provides a
nonlinear counterpart of the classical -coercivity theory for linear
problems, which is missing in the existing literature. Both local and global
estimates are established. The latter apply to solutions to either Dirichlet or
Neumann boundary value problems. Minimal regularity on the boundary of the
domain is required. If the domain is convex, no regularity of its boundary is
needed at all
Mapping the distribution of Anthrax in Mainland China, 2005-2013
Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections
Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements
We have determined spectral phases of Ne autoionizing states from extreme ultraviolet and midinfrared attosecond interferometric measurements and ab initio full-electron time-dependent theoretical calculations in an energy interval where several of these states are coherently populated. The retrieved phases exhibit a complex behavior as a function of photon energy, which is the consequence of the interference between paths involving various resonances. In spite of this complexity, we show that phases for individual resonances can still be obtained from experiment by using an extension of the Fano model of atomic resonances. As simultaneous excitation of several resonances is a common scenario in many-electron systems, the present work paves the way to reconstruct electron wave packets coherently generated by attosecond pulses in systems larger than heliumWork supported by the ERC proof-of-concept Grant No. 780284-Imaging-XChem within the seventh framework program of the European Union, the MINECO Project No. FIS2013-42002-R, the EU-H2020- LASERLABEUROPE-654148, the ANR Projects No. ANR-15-CE30-0001-CIMBAAD, No. ANR-11- EQPX0005-ATTOLAB, and No. ANR-10-LABX-0039- PALM, the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award no. DEGF02-04ER15614, and the NSF Grant No. PHY-1607588. Calculations were performed at CCC-UAM and Marenostrum Supercomputer Center. F. M. acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, Grant No. SEV-2016- 0686) and the “María de Maeztu” Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377
Improved Limits on decays to invisible final states
We establish improved upper limits on branching fractions for B0 decays to
final States 10 where the decay products are purely invisible (i.e., no
observable final state particles) and for final states where the only visible
product is a photon. Within the Standard Model, these decays have branching
fractions that are below the current experimental sensitivity, but various
models of physics beyond the Standard Model predict significant contributions
for these channels. Using 471 million BB pairs collected at the Y(4S) resonance
by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National
Accelerator Laboratory, we establish upper limits at the 90% confidence level
of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the
branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Search for lepton-number violating processes in B+ -> h- l+ l+ decays
We have searched for the lepton-number violating processes B+ -> h- l+ l+
with h- = K-/pi- and l+ = e+/mu+, using a sample of 471+/-3 million BBbar
events collected with the BaBar detector at the PEP-II e+e- collider at the
SLAC National Accelerator Laboratory. We find no evidence for these decays and
place 90% confidence level upper limits on their branching fractions Br(B+ ->
pi- e+ e+) K- e+ e+) pi-
mu+ mu+) K- mu+ mu+) < 6.7 x 10^{-8}.Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D. R
- …
