116 research outputs found

    Prostasome-like particles in stallion semen.

    Get PDF
    Human semen contains membranous vesicles called prosta- somes. They are secreted by the prostate gland and contain large amounts of cholesterol, sphingomyelin, and Ca2. Prostasomes enhance the motility of ejaculated spermatozoa and are in- volved in a number of additional biological functions. No prostasome-like vesicles have been described in horse se- men up to now. We have demonstrated the presence of pros- tasome-like vesicles in the equine semen and characterized them as to size, morphology, and lipid composition; we have found that they are similar to human prostasomes in many re- spects. We propose that these vesicles might be important for the fecundity of horse semen. This is of interest since the success of artificial insemination is limited by the fact that stallion sperm barely survive cryopreservation

    Unsaturated fatty acids, omega-3 index and hospitalization in MISC

    Get PDF
    The growing interest in Omega-3 fatty acids as diagnostic markers or new therapeutic approaches also for COVID-19 disease, led us to investigate the presence of potential correlations between Omega-3 fatty acids' levels in whole blood and days of hospitalization or admission to the paediatric intensive care unit (PICU) in 51 children with MIS-C diagnosis following SARS-CoV-2 infection. A statistically significant negative correlation was observed between days of hospitalization and docosapentaenoic acid (22:5n-3,DPA), docosahexaenoic acid (DHA) and total Omega-3 FA levels. Dividing the study group into quartiles according to Omega-3-Index (O3I), no statistically significant difference was observed with respect to the PICU admission rate. In contrast, the number of days of hospitalization in Q4 (O3I ≥ 2.51 %) was different from the number observed in groups Q1-3 (O3I < 2.51 %), with subjects showing higher O3I needing shorter hospitalizations than the subjects with lower O3I. According to previous study investigating O3I in adults affected by Sars-cov-2 we explored the levels of this nutrients in children with MIS-C. Our exploratory study shows that high DPA, DHA and O3I levels could be effective in reducing the length of hospitalization

    Molecular Survey on Kobuviruses in Domestic and Wild Ungulates From Northwestern Italian Alps

    Get PDF
    Since the first identification in 1989 in humans, kobuviruses (KoVs) have been identified from a wide range of animal species including carnivores, rodents, birds, ungulates, rabbits, and bats. Several studies have described the identification of genetically related KoVs in the fecal virome of domestic and wild animals suggesting a mutual exchange of viruses. By screening a total of 231 fecal samples from wild and domestic ungulates, KoVs RNA was detected in wild boars (3.2%; 2/63), chamois (4.6%; 2/43), and goats (2.6%; 2/77). On phylogenetic analysis of the partial RdRp sequence, the wild boar strains clustered within the species Aichivirus C whilst the strains identified in domestic and wild ruminants grouped into the species Aichivirus B. The complete VP1 gene was obtained for chamois and goat KoVs. Interestingly, upon phylogenetic analysis the strains grouped together with a KoV of ovine origin within a distinct genetic type (B3) of the species Aichivirus B

    Molecular identification and characterization of a genotype 3 hepatitis e virus (HEV) strain detected in a wolf faecal sample, Italy

    Get PDF
    Hepatitis E virus (HEV) infection is a major health problem worldwide. In developed countries, zoonotic transmission of HEV genotypes (Gt) 3 and 4 is caused by the ingestion of raw or undercooked meat of infected pigs and wild boars, the main reservoirs of HEV. However, additional animals may harbour HEV or HEV-related strains, including carnivores. In this study, we investigated the molecular epidemiology of orthohepeviruses in wild canids by screening a total of 136 archival faecal samples, collected from wolves (42) and red foxes (94) in Northwestern Italy. Orthohepevirus RNA was identified in a faecal specimen, collected from a wolf carcass in the province of La Spezia (Liguria Region, Italy). The nearly full-length (7212 nucleotides) genome of the strain HEV/81236/Wolf/2019/ITA (GenBank accession no. MZ463196) was determined by combining a sequence-independent single-primer amplification (SISPA) approach with the Oxford Nanopore Technologies sequencing platform. Upon phylogenetic analysis, the HEV detected in wolf was segregated into clade HEV-3.1, displaying the highest nucleotide (nt) identity (89.0–93.3%) to Gt3 strains belonging to subtype c. Interestingly, the wolf faecal sample also contained porcine astrovirus sequences, endorsing the hypothesis of a dietary origin of the HEV strain due to preying habits

    Surveillance study of hepatitis E virus (HEV) in domestic and wild ruminants in northwestern Italy

    Get PDF
    In industrialized countries, increasing autochthonous infections of hepatitis E virus (HEV) are caused by zoonotic transmission of genotypes (Gts) 3 and 4, mainly through consumption of contaminated raw or undercooked pork meat. Although swine and wild boar are recognized as the main reservoir for Gt3 and Gt4, accumulating evidence indicates that other animal species, including domestic and wild ruminants, may harbor HEV. Herein, we screened molecularly and serologically serum and fecal samples from two domestic and four wild ruminant species collected in Valle d’Aosta and Piemonte regions (northwestern Italy. HEV antibodies were found in sheep (21.6%), goats (11.4%), red deer (2.6%), roe deer (3.1%), and in Alpine ibex (6.3%). Molecular screening was performed using different primer sets targeting highly conserved regions of hepeviruses and HEV RNA, although at low viral loads, was detected in four fecal specimens (3.0%, 4/134) collected from two HEV seropositive sheep herds. Taken together, the data obtained document the circulation of HEV in the geographical area assessed both in wild and domestic ruminants, but with the highest seroprevalence in sheep and goats. Consistently with results from other studies conducted in southern Italy, circulation of HEV among small domestic ruminants seems to occur more frequently than expected

    On the aggregation and nucleation mechanism of the monoclonal antibody anti-CD20 near liquid-liquid phase separation (LLPS)

    Get PDF
    The crystallization of Anti-CD20, a full-length monoclonal antibody, has been studied in the PEG400/Na2SO4/Water system near Liquid-Liquid Phase Separation (LLPS) conditions by both sitting-drop vapour diffusion and batch methods. In order to understand the Anti-CD20 crystallization propensity in the solvent system of different compositions, we investigated some measurable parameters, normally used to assess protein conformational and colloidal stability in solution, with the aim to understand the aggregation mechanism of this complex biomacromolecule. We propose that under crystallization conditions a minor population of specifically aggregated protein molecules are present. While this minor species hardly contributes to the measured average solution behaviour, it induces and promotes crystal formation. The existence of this minor species is the result of the LLPS occurring concomitantly under crystallization conditions

    Blood fatty acids profile in mis-c children

    Get PDF
    MIS-C (multisystem inflammatory syndrome in children) linked to SARS-CoV-2 infection, is a pathological state observed in subjects younger than 21 years old with evidence of either current SARS-CoV-2 infection or exposure within the 4 weeks prior to the onset of symptoms, the presence of documented fever, elevated markers of inflammation, at least two signs of multisystem involvement, and, finally, lack of an alternative diagnosis. They share with adult COVID-19 patients the presence of altered markers of inflammation, but unlike most adults the symptoms are not pulmonary but are affecting several organs. Lipid mediators arising from polyunsaturated fatty acids (PUFA) play an important role in the inflammatory response, with arachidonic acid-derived compounds, such as prostaglandins and leukotrienes, mainly pro-inflammatory and ω3 PUFA metabolites such as resolvins and protectins, showing anti-inflammatory and pro-resolution activities. In order to assess potential alterations of these FA, we evaluated the blood fatty acid profile of MIS-C children at admission to the hospital, together with biochemical, metabolic and clinical assessment. All the patients enrolled showed altered inflammatory parameters with fibrinogen, D-dimer, NT-proBNP, ferritin, aspartate aminotransferase (AST), C-reactive protein (CRP) and TrygIndex levels over the reference values in all the subjects under observation, while albumin and HDL-cholesterol resulted below the normal range. Interestingly, linoleic acid (LA), arachidonic acid (AA) and the ω3 PUFA docosahexaenoic acid (DHA) results were lower in our study when compared to relative amounts reported in the other studies, including from our own laboratory. This significant alteration is pointing out to a potential depletion of these PUFA as a result of the systemic inflammatory condition typical of these patients, suggesting that LA-and AA-derived metabolites may play a critical role in this pathological state, while ω3 PUFA-derived pro-resolution metabolites in these subjects may not be able to provide a timely, physiological counterbalance to the formation of pro-inflammatory lipid mediators. In conclusion, this observational study provides evidence of FA alterations in MIS-C children, suggesting a significant contribution of ω6 FA to the observed inflammatory state, and supporting a potential dietary intervention to restore an appropriate balance among the FAs capable of promoting the resolution of the observed inflammatory condition

    Is chemically reactive membrane crystallisation faciliated by heterogeneous primary nucleation? Comparison with conventional gas-liquid crystallisation for ammonium bicarbonate precipitation in a CO2-NH3-H2O system

    Get PDF
    In this study, membrane crystallisation is compared to conventional gas-liquid crystallisation for the precipitation of ammonium bicarbonate, to demonstrate the distinction in kinetic trajectory and illustrate the inherent advantage of phase separation introduced by the membrane to crystallising in gas-liquid systems. Through complete mixing of gas and liquid phases in conventional crystallisation, high particle numbers were confirmed at low levels of supersaturation. This was best described by secondary nucleation effects in analogy to mixed suspension mixed product removal (MSMPR) crystallisation, for which a decline in population density was observed with an increase in crystal size. In contrast, for membrane crystallisation, fewer nuclei were produced at an equivalent level of supersaturation. This supported growth of fewer, larger crystals which is preferred to simplify product recovery and limit occlusions. Whilst continued crystal growth was identified with the membrane, this was accompanied by an increase in nucleation rate which would indicate the segregation of heterogeneous primary nucleation from crystal growth, and was confirmed by experimental derivation of the interfacial energy for ammonium bicarbonate (σ, 6.6 mJ m-2), which is in agreement to that estimated for inorganic salts. The distinction in kinetic trajectory can be ascribed to the unique phase separation provided by the membrane which promotes a counter diffusional chemical reaction to develop, introducing a region of concentration adjacent to the membrane. The membrane also lowers the activation energy required to initiate nucleation in an unseeded solution. In conventional crystallisation, the high nucleation rate was due to the higher probability for collision, and the gas stripping of ammonia (around 40% loss) through direct contact between phases which lowered pH and increased bicarbonate availability for the earlier onset of nucleation. It is this high nucleation rate which has restricted the implementation of gas-liquid crystallisation in direct contact packed columns for carbon capture and storage. Importantly, this study evidences the significance of the membrane to governing crystallisation for gas-liquid chemical reactions through providing controlled phase separation

    Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning.</p> <p>Results</p> <p>We profiled the transcriptome of <it>Vitis vinifera </it>cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m<sup>2 </sup>leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed.</p> <p>Conclusion</p> <p>Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.</p
    corecore