15,795 research outputs found

    The Initial Conditions of Clustered Star Formation. II. N2H+ Observations of the Ophiuchus B Core

    Full text link
    We present a Nobeyama 45 m Radio Telescope map and Australia Telescope Compact Array pointed observations of N2H+ 1-0 emission towards the clustered, low mass star forming Oph B Core within the Ophiuchus molecular cloud. We compare these data with previously published results of high resolution NH3 (1,1) and (2,2) observations in Oph B. We use 3D Clumpfind to identify emission features in the single-dish N2H+ map, and find that the N2H+ `clumps' match well similar features previously identified in NH3 (1,1) emission, but are frequently offset to clumps identified at similar resolution in 850 micron continuum emission. Wide line widths in the Oph B2 sub-Core indicate non-thermal motions dominate the Core kinematics, and remain transonic at densities n ~ 3 x 10^5 cm^-3 with large scatter and no trend with N(H2). Non-thermal motions in Oph B1 and B3 are subsonic with little variation, but also show no trend with H2 column density. Over all Oph B, non-thermal N2H+ line widths are substantially narrower than those traced by NH3, making it unlikely NH3 and N2H+ trace the same material, but the v_LSR of both species agree well. We find evidence for accretion in Oph B1 from the surrounding ambient gas. The NH3/N2H+ abundance ratio is larger towards starless Oph B1 than towards protostellar Oph B2, similar to recent observational results in other star-forming regions. Small-scale structure is found in the ATCA N2H+ 1-0 emission, where emission peaks are again offset from continuum emission. In particular, the ~1 M_Sun B2-MM8 clump is associated with a N2H+ emission minimum and surrounded by a broken ring-like N2H+ emission structure, suggestive of N2H+ depletion. We find a strong general trend of decreasing N2H+ abundance with increasing N(H2) in Oph B which matches that found for NH3.Comment: 55 pages (manuscript), 15 figures, ApJ accepte

    Enactivism and Robotic Language Acquisition: A Report from the Frontier

    Get PDF
    In this article, I assess an existing language acquisition architecture, which was deployed in linguistically unconstrained human–robot interaction, together with experimental design decisions with regard to their enactivist credentials. Despite initial scepticism with respect to enactivism’s applicability to the social domain, the introduction of the notion of participatory sense-making in the more recent enactive literature extends the framework’s reach to encompass this domain. With some exceptions, both our architecture and form of experimentation appear to be largely compatible with enactivist tenets. I analyse the architecture and design decisions along the five enactivist core themes of autonomy, embodiment, emergence, sense-making, and experience, and discuss the role of affect due to its central role within our acquisition experiments. In conclusion, I join some enactivists in demanding that interaction is taken seriously as an irreducible and independent subject of scientific investigation, and go further by hypothesising its potential value to machine learning.Peer reviewedFinal Published versio

    A family of linearizable recurrences with the Laurent property

    Get PDF
    We consider a family of non-linear recurrences with the Laurent property. Although these recurrences are not generated by mutations in a cluster algebra, they fit within the broader framework of Laurent phenomenon algebras, as introduced recently by Lam and Pylyavskyy. Furthermore, each member of this family is shown to be linearizable in two different ways, in the sense that its iterates satisfy both a linear relation with constant coefficients and a linear relation with periodic coefficients. Associated monodromy matrices and first integrals are constructed, and the connection with the dressing chain for Schrödinger operators is also explained

    From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation

    Full text link
    Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial and boundary conditions of the star formation process. The Herschel results emphasize the role of interstellar filaments in the star formation process and connect remarkably well with nearly a decade's worth of numerical simulations and theory that have consistently shown that the ISM should be highly filamentary on all scales and star formation is intimately related to self-gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is governed by relatively simple universal processes - from filamentary clumps to galactic scales. We emphasize two crucial and complementary aspects: (i) the key observational results obtained with Herschel over the past three years, along with relevant new results obtained from the ground on the kinematics of interstellar structures, and (ii) the key existing theoretical models and the many numerical simulations of interstellar cloud structure and star formation. We then synthesize a comprehensive physical picture that arises from the confrontation of these observations and simulations.Comment: 24 pages, 15 figures. Accepted for publication as a review chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Optical and submillimetre observations of Bok globules -- tracing the magnetic field from low to high density

    Full text link
    We present optical and submillimetre polarimetry data of the Bok globule CB3 and optical polarimetry data of the Bok globule CB246. We use each set of polarimetry data to infer the B-field orientation in each of the clouds. The optical data can only be used in the low density, low extinction edge regions of clouds. The submillimetre data can only be used in the high column-density, central regions of the clouds. It has previously been found that near-infrared polarisation mapping of background stars does not accurately trace the magnetic field in dense cloud regions. This may be due to a lack of aligned grains in dense regions. We test this by comparing the field orientations measured by our two independent polarimetry methods. We find that the field orientation deduced from the optical data matches up well with the orientation estimated from the submillimetre data. We therefore claim that both methods are accurately tracing the same magnetic field in CB3. Hence, in this case, there must be significant numbers of aligned dust grains in the high density region, and they do indeed trace the magnetic field in the submillimetre. We find an offset of 40±\pm14 degrees between the magnetic field orientation and the short axis of the globule. This is consistent with the mean value of 31±\pm3 degrees found in our previous work on prestellar cores, even though CB3 is a protostellar core. Taken together, the six prestellar cores that we have now studied in this way show a mean offset between magnetic field orientation and core short axis of 30±\sim30\pm3 degrees, in apparent contradiction with some models of magnetically dominated star formation.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall systems

    Full text link
    The Hall viscosity, a non-dissipative transport coefficient analogous to Hall conductivity, is considered for quantum fluids in gapped or topological phases. The relation to mean orbital spin per particle discovered in previous work by one of us is elucidated with the help of examples, using the geometry of shear transformations and rotations. For non-interacting particles in a magnetic field, there are several ways to derive the result (even at non-zero temperature), including standard linear response theory. Arguments for the quantization, and the robustness of Hall viscosity to small changes in the Hamiltonian that preserve rotational invariance, are given. Numerical calculations of adiabatic transport are performed to check the predictions for quantum Hall systems, with excellent agreement for trial states. The coefficient of k^4 in the static structure factor is also considered, and shown to be exactly related to the orbital spin and robust to perturbations in rotation invariant systems also.Comment: v2: Now 30 pages, 10 figures; new calculation using disk geometry; some other improvements; no change in result

    Molecular line contamination in the SCUBA-2 450 {\mu}m and 850 {\mu}m continuum data

    Get PDF
    Observations of the dust emission using millimetre/submillimetre bolometer arrays can be contaminated by molecular line flux, such as flux from 12CO. As the brightest molecular line in the submillimetre, it is important to quantify the contribution of CO flux to the dust continuum bands. Conversion factors were used to convert molecular line integrated intensities to flux detected by bolometer arrays in mJy per beam. These factors were calculated for 12CO line integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud complex to quantify the respective 12CO flux contribution to the 850 {\mu}m dust continuum emission. Sources with high molecular line contamination were analysed in further detail for molecular outflows and heating by nearby stars to determine the cause of the 12CO contribution. The majority of sources had a 12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular outflows, the 12CO can dominate the source dust continuum (up to 79 per cent contamination) with 12CO fluxes reaching \sim 68 mJy per beam.Comment: Accepted 2012 April 19 for publication in MNRAS. 21 pages, 13 figures, 3 table

    The Evolution of Cloud Cores and the Formation of Stars

    Full text link
    For a number of starless cores, self-absorbed molecular line and column density observations have implied the presence of large-amplitude oscillations. We examine the consequences of these oscillations on the evolution of the cores and the interpretation of their observations. We find that the pulsation energy helps support the cores and that the dissipation of this energy can lead toward instability and star formation. In this picture, the core lifetimes are limited by the pulsation decay timescales, dominated by non-linear mode-mode coupling, and on the order of ~few x 10^5--10^6 yr. Notably, this is similar to what is required to explain the relatively low rate of conversion of cores into stars. For cores with large-amplitude oscillations, dust continuum observations may appear asymmetric or irregular. As a consequence, some of the cores that would be classified as supercritical may be dynamically stable when oscillations are taken into account. Thus, our investigation motivates a simple hydrodynamic picture, capable of reproducing many of the features of the progenitors of stars without the inclusion of additional physical processes, such as large-scale magnetic fields.Comment: 12 pages, 7 figures, submitted to Ap

    The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers

    Full text link
    We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physical motivation for the sub-kiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models. In models with winds, these high velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) < 1.7 times the circular velocity, whereas the models with AGN feedback-driven winds can drive high velocity peaks to ~2.5 times the circular velocity.Comment: Accepted by ApJ; Minor revisions; Resolution tests include
    corecore