140 research outputs found
A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols
This document is the Accepted Manuscript version of the following article: S. Vratolis, et al, ‘A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols’, Journal of Aerosol Science, Vol. 117: 54-62, March 2018. Under embargo until 29 December 2019. The final, published version is available online at DOI: https://doi.org/10.1016/j.jaerosci.2017.12.013.In the context of the international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD, 15 May to 22 June 2014), dry aerosol size distributions were measured at Demokritos station (DEM) using a Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 550 nm (electrical mobility diameter), and an Optical Particle Counter (OPC model Grimm 107 operating at the laser wavelength of 660 nm) to acquire the particle size distribution in the size range of 250 nm to 2.5 μm optical diameter. This work describes a method that was developed to align size distributions in the overlapping range of the SMPS and the OPC, thus allowing us to retrieve the real part of the aerosol equivalent refractive index (ERI). The objective is to show that size distribution data acquired at in situ measurement stations can provide an insight to the physical and chemical properties of aerosol particles, leading to better understanding of aerosol impact on human health and earth radiative balance. The resulting ERI could be used in radiative transfer models to assess aerosol forcing direct effect, as well as an index of aerosol chemical composition. To validate the method, a series of calibration experiments were performed using compounds with known refractive index (RI). This led to a corrected version of the ERI values, (ERICOR). The ERICOR values were subsequently compared to model estimates of RI values, based on measured PM2.5 chemical composition, and to aerosol RI retrieved values by inverted lidar measurements on selected days.Peer reviewe
Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area
The study aims to assess the differences between the chemical profiles of the major anthropogenic and natural PM sources in two areas with different levels of urbanization and traffic density within the same urban agglomeration. A traffic site and an urban background site in the Athens Metropolitan Area have been selected for this comparison. For both sites, eight sources were identified, with seven of them being common for the two sites (Mineral Dust, non-Exhaust Emissions, Exhaust Emissions, Heavy Oil Combustion, Sulfates & Organics, Sea Salt and Biomass Burning) and one, site-specific (Nitrates for the traffic site and Aged Sea Salt for the urban background site). The similarity between the source profiles was quantified using two statistical analysis tools, Pearson correlation (PC) and Standardized Identity Distance (SID). According to Pearson coefficients five out of the eight source profiles present high (PC > 0.8) correlation (Mineral Dust, Biomass Burning, Sea Salt, Sulfates and Heavy Oil Combustion), one presented moderate (0.8 > PC > 0.6) correlation (Exhaust) and two low/no (PC < 0.6) correlation (non-Exhaust, Nitrates/Aged Sea Salt). The source profiles that appear to be more correlated are those of sources that are not expected to have high spatial variability because there are either natural/secondary and thus have a regional character or are emitted outside the urban agglomeration and are transported to both sites. According to SID four out of the eight sources have high statistical correlation (SID < 1) in the two sites (Mineral Dust, Sea salt, Sulfates, Heavy Oil Combustion). Biomass Burning was found to be the source that yielded different results from the two methodologies. The careful examination of the source profile of that source revealed the reason for this discrepancy. SID takes all the species of the profile equally into account, while PC might be disproportionally affected by a few numbers of species with very high concentrations. It is suggested, based on the findings of this work, that the combined use of both tools can lead the users to a thorough evaluation of the similarity of source profiles. This work is, to the best of our knowledge, the first time a study is focused on the quantitative comparison of the source profiles for sites inside the same urban agglomeration using statistical indicators.The study was supported by “CALIBRA/EYIE” (MIS 5002799) and “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516) implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). Collection and chemical analysis of samples were supported by LIFE + AIRUSE EU project (ENV/ES/584). Partial support was also received by H2020 ERAPLANET/SMURBS ERANET GA No 689443.Peer reviewe
Results of the first European Source Apportionment intercomparison for Receptor and Chemical Transport Models
In this study, the performance of the source apportionment model applications were evaluated by comparing the model results provided by 44 participants adopting a methodology based on performance indicators: z-scores and RMSEu, with pre-established acceptability criteria. Involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), provided a unique opportunity to cross-validate them. In addition, comparing the modelled source chemical profiles, with those measured directly at the source contributed to corroborate the chemical profile of the tested model results. The most used RM was EPA- PMF5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) and more difficulties are observed with SCE time series (72% of RMSEu accepted). Industry resulted the most problematic source for RMs due to the high variability among participants. Also the results obtained with CTMs were quite comparable to their ensemble reference using all models for the overall average (>92% of successful z-scores) while the comparability of the time series is more problematic (between 58% and 77% of the candidates’ RMSEu are accepted). In the CTM models a gap was observed between the sum of source contributions and the gravimetric PM10 mass likely due to PM underestimation in the base case. Interestingly, when only the tagged species CTM results were used in the reference, the differences between the two CTM approaches (brute force and tagged species) were evident. In this case the percentage of candidates passing the z-score and RMSEu tests were only 50% and 86%, respectively. CTMs showed good comparability with RMs for the overall dataset (83% of the z-scores accepted), more differences were observed when dealing with the time series of the single source categories. In this case the share of successful RMSEu was in the range 25% - 34%.JRC.C.5-Air and Climat
A new method for the quantification of ambient particulate-matter emission fluxes
An inversion method has been developed in order to quantify the emission fluxes of certain aerosol pollution sources across a wide region in the Northern Hemisphere, mainly in Europe and western Asia. The data employed are the aerosol contribution factors deducted by positive matrix factorization (PMF) on a PM2.5 chemical composition dataset from 16 European and Asian cities for the period 2014 to 2016. The spatial resolution of the method corresponds to the geographic grid cell size of the Lagrangian particle dispersion model (Flexible Particle Dispersion Model, FLEXPART, 1∘ × 1∘) which was utilized for the air mass backward simulations. The area covered is also related to the location of the 16 cities under study. Species with an aerodynamic geometric mean diameter of 400 nm and 3.1 µm and a geometric standard deviation of 1.6 and 2.25, respectively, were used to model the secondary sulfate and dust aerosol transport. Potential source contribution function (PSCF) analysis and generalized Tikhonov regularization were applied so as to acquire potential source areas and quantify their emission fluxes. A significant source area for secondary sulfate on the east of the Caspian Sea is indicated, when data from all stations are used. The maximum emission flux in that area is as high as 10 × 10−12 kg m−2 s−1. When Vilnius, Dushanbe, and Kurchatov data were excluded, the areas with the highest emission fluxes were the western and central Balkans and southern Poland. The results display many similarities to the SO2 emission maps provided by the OMI-HTAP (Ozone Monitoring Instrument-Hemispheric Transport Air Pollution) and ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) databases. For dust aerosol, measurements from Athens, Belgrade, Debrecen, Lisbon, Tirana, and Zagreb are utilized. The west Sahara region is indicated as the most important source area, and its contribution is quantified, with a maximum of 17.6 × 10−12 kg m−2 s−1. When we apply the emission fluxes from every geographic grid cell (1∘ × 1∘) for secondary sulfate aerosol deducted with the new method to air masses originating from Vilnius, a useful approximation to the measured values is achieved.</p
ECOC comparison exercise with identical thermal protocols after temperature offset correction - Instrument diagnostics by in-depth evaluation of operational parameters
© Author(s) 2015. A comparison exercise on thermal-optical elemental carbon/organic carbon (ECOC) analysers was carried out among 17 European laboratories. Contrary to previous comparison exercises, the 17 participants made use of an identical instrument set-up, after correcting for temperature offsets with the application of a recently developed temperature calibration kit (Sunset Laboratory Inc, OR, US). Temperature offsets reported by participants ranged from -93 to +100 °C per temperature step. Five filter samples and two sucrose solutions were analysed with both the EUSAAR2 and NIOSH870 thermal protocols. z scores were calculated for total carbon (TC); nine outliers and three stragglers were identified. Three outliers and eight stragglers were found for EC. Overall, the participants provided results between the warning levels with the exception of two laboratories that showed poor performance, the causes of which were identified and corrected through the course of the comparison exercise. The TC repeatability and reproducibility (expressed as relative standard deviations) were 11 and 15% for EUSAAR2 and 9.2 and 12% for NIOSH870; the standard deviations for EC were 15 and 20% for EUSAAR2 and 20 and 26% for NIOSH870. TC was in good agreement between the two protocols, TCNIOSH870 =0.98 × TCEUSAAR2 (R2 = 1.00, robust means). Transmittance (TOT) calculated EC for NIOSH870 was found to be 20% lower than for EUSAAR2, ECNIOSH870 = 0.80 × ECEUSAAR2 (R2 = 0.96, robust means). The thermograms and laser signal values were compared and similar peak patterns were observed per sample and protocol for most participants. Notable deviations from the typical patterns indicated either the absence or inaccurate application of the temperature calibration procedure and/or pre-oxidation during the inert phase of the analysis. Low or zero pyrolytic organic carbon (POC), as reported by a few participants, is suggested as an indicator of an instrument-specific pre-oxidation. A sample-specific pre-oxidation effect was observed for filter G, for all participants and both thermal protocols, indicating the presence of oxygen donors on the suspended particulate matter. POC (TOT) levels were lower for NIOSH870 than for EUSAAR2, which is related to the heating profile differences of the two thermal protocols
Recommended from our members
Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations
Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.
The current state of availability and practicability of soot standard reference materials (SRMs) was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2), an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA) to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods
Implementation of real-time source apportionment approaches using the ACSM–Xact–Aethalometer (AXA) setup with SoFi RT: the Athens case study
Air pollution, particularly from particulate matter (PM), poses serious public health and environmental risks, especially in urban areas. To address this, accurate source apportionment (SA) of PM is essential for effective air quality management. Traditional SA approaches often rely on offline data collection, limiting timely responses to pollution events. SA applied on data from online techniques, especially with high temporal resolution, is advantageous over offline techniques, enabling the study of the diurnal variability of emission sources and also the study of specific events. Recent technological advancements now enable real-time SA, allowing continuous, detailed analysis of pollution sources. This study presents the first application of the ACSM–Xact–Aethalometer (AXA) setup integrated with SoFi RT software for real-time source apportionment of PM in Athens, Greece. The AXA setup integrates chemical, elemental, and black carbon (BC) data streams, covering a broad spectrum of PM components and capturing a comprehensive representation of PM sources in an urban environment. SoFi RT handles data from the AXA instruments as separate inputs within a single matrix, placing them in distinct diagonal blocks. Each main instrument's data (ACSM, Xact) is processed independently, with the model applying instrument-specific constraints and generating separate source factors, effectively performing two parallel source apportionments in a single run of the ME-2 solver. Equivalent sources identified across the two instruments are then combined post-analysis to provide a unified interpretation of source contributions. The apportionment of BC to BCsf and BClf (solid fuel and liquid fuel) can be performed in either of the main instrument experiments and does not require dedicated processing. The results demonstrate that traffic-related emissions are the largest contributors to PM, with significant contributions from secondary species such as sulfate, nitrate, ammonium, and secondary organic aerosols, which together accounted for approximately 57 % of the PM mass. Primary sources such as biomass burning and cooking contributed around 10 % each, with natural sources like dust and sea salt comprising the remainder. The SoFi RT software is employed for continuous SA, offering automated analysis of PM sources in near real time (minutes after the measurements). Our findings demonstrate that this setup effectively identifies major pollution sources. This work underscores the AXA system's potential for advancing urban air quality monitoring and informs targeted interventions to reduce PM pollution.</p
Editorial: Aerosol Research – a new diamond open-access journal covering the breadth of aerosol science and technology
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
The Cloud-AerosoL InteractionS in the Helmos background TropOsphere (CALISHTO) campaign took place in autumn 2021 at the NCSR Demokritos background high-altitude Helmos Hellenic Atmospheric Aerosol and Climate Change station (HAC)2 to study the interactions between aerosols and clouds. The current study presents the chemical characterization of the non-refractory (NR) PM1 aerosol fraction using a time-of-flight aerosol chemical speciation monitor (ToF-ACSM). A comparative offline aerosol filter analysis by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) showed consistent results regarding the species determined. Source apportionment applied on both datasets (ACSM-ToF and offline AMS analysis on filter extracts) yielded the same factors for the organic aerosol (one primary and two secondary factors). Additionally, the positive matrix factorization (PMF) model was applied on the total PM1 fraction by the ToF-ACSM (including both organic and inorganic ions). Five different types were identified, including a primary organic factor; ammonium nitrate; ammonium sulfate; and two secondary organic aerosols, one more oxidized and one less oxidized. The prevailing atmospheric conditions at the station, i.e., cloud presence, influence of emissions from the planetary boundary layer (PBL), and air mass origin, were also incorporated in the study. The segregation between PBL and free-troposphere (FT) conditions was made by combining data from remote sensing and in situ measurement techniques. The types of air masses arriving at the site were grouped as continental, marine, dust, and marine–dust based on back-trajectory data. Significant temporal variability in the aerosol characteristics was observed throughout the campaign; in September, air masses from within the PBL were sampled most of the time, resulting in much higher mass concentrations compared to October and November when concentrations were reduced by a factor of 5. Both in-cloud and FT measurement periods resulted in much lower concentration levels, while a similar composition was observed in PBL and FT conditions. We take advantage of using a recently developed “virtual-filtering” technique to separate interstitial from activated aerosol sampled from a PM10 inlet during cloudy periods. This allows the determination of the chemical composition of the interstitial aerosol during in-cloud periods. Ammonium sulfate, the dominant PMF factor in all conditions, contributed more when air masses were arriving at (HAC)2 during dust events, while a higher secondary organic aerosol contribution was observed when air masses arrived from continental Europe.</p
- …
