1,032 research outputs found
Photon temporal modes: a complete framework for quantum information science
Field-orthogonal temporal modes of photonic quantum states provide a new
framework for quantum information science (QIS). They intrinsically span a
high-dimensional Hilbert space and lend themselves to integration into existing
single-mode fiber communication networks. We show that the three main
requirements to construct a valid framework for QIS -- the controlled
generation of resource states, the targeted and highly efficient manipulation
of temporal modes and their efficient detection -- can be fulfilled with
current technology. We suggest implementations of diverse QIS applications
based on this complete set of building blocks.Comment: 17 pages, 13 figure
NS Fivebrane and Tachyon Condensation
We argue that a semi-infinite D6-brane ending on an NS5-brane can be obtained
from the condensation of the tachyon on the unstable D9-brane of type IIA
theory. The construction uses a combination of the descriptions of these branes
as solitons of the worldvolume theory of the D9-brane. The NS5-brane, in
particular, involves a gauge bundle which is operator valued, and hence is
better thought of as a gerbe.Comment: 20 pages, harvma
Analysis of collaborative filtering algorithms
Recommender System is a subclass of information filtering system which predicts the rating given to an item by any user. Collaborative filtering is a key technique in recommender systems. This technique predicts the user rating of an item by collaboration of other users who have similar interests with this user. Collaborative filtering approaches can be categorized as Memory based, Model-based and Hybrid approaches. Memory-based approach can be further classified as Item-based and User-based recommendations. Pearson correlation scheme belongs to user-based scheme and Slope one family of algorithms belong to item-based scheme. Slope one family consists of Normal, Weighted and Bipolar slope one algorithms. Algorithms belonging to model-based approach are Singular value decomposition, Regularized Singular value decomposition and Probabilistic Matrix Factorization. In hybrid approach combination of memory-based and model-based approaches are used for making recommendations. In this thesis we made an attempt to analyze various algorithms in Memory-based and Model-based approaches. In model based algorithms, we analyzed Singular Value Decomposition (SVD) and Regularized Singular Value Decomposition (RSVD). By taking three different dataset sizes, we observed that RSVD outperforms SVD for all three dataset sizes. In memory based algorithms, we analyzed Pearson correlation scheme which takes the correlation between user vectors as similarity measure and Slope one family of algorithms. In slope one algorithms, we proposed an improvement to the existing scheme for determining Threshold value of Bipolar slope one algorithm. We used median and average of min-max ratings which outperforms the existing user average scheme. Finally, we made an analysis of all these algorithms and concluded that RSVD outperforms rest of the algorithms in terms of accuracy of predictions
Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light
Interaction of spin and intrinsic orbital angular momentum of light is
observed, as evidenced by length-dependent rotations of both spatial patterns
and optical polarization in a cylindrically-symmetric isotropic optical fiber.
Such rotations occur in straight few-mode fiber when superpositions of two
modes with parallel and anti-parallel orientation of spin and intrinsic orbital
angular momentum (IOAM=) are excited, resulting from a degeneracy
splitting of the propagation constants of the modes.Comment: 6 pages, 5 figures, and a detailed supplement. Version 3 corrects a
typo and adds the journal referenc
Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides: Erratum
Theory of noise suppression in {\Lambda}-type quantum memories by means of a cavity
Quantum memories, capable of storing single photons or other quantum states
of light, to be retrieved on-demand, offer a route to large-scale quantum
information processing with light. A promising class of memories is based on
far-off-resonant Raman absorption in ensembles of -type atoms. However
at room temperature these systems exhibit unwanted four-wave mixing, which is
prohibitive for applications at the single-photon level. Here we show how this
noise can be suppressed by placing the storage medium inside a moderate-finesse
optical cavity, thereby removing the main roadblock hindering this approach to
quantum memory.Comment: 10 pages, 3 figures. This paper provides the theoretical background
to our recent experimental demonstration of noise suppression in a
cavity-enhanced Raman-type memory ( arXiv:1510.04625 ). See also the related
paper arXiv:1511.05448, which describes numerical modelling of an atom-filled
cavity. Comments welcom
Non-relativistic metrics from back-reacting fermions
It has recently been pointed out that under certain circumstances the
back-reaction of charged, massive Dirac fermions causes important modifications
to AdS_2 spacetimes arising as the near horizon geometry of extremal black
holes. In a WKB approximation, the modified geometry becomes a non-relativistic
Lifshitz spacetime. In three dimensions, it is known that integrating out
charged, massive fermions gives rise to gravitational and Maxwell Chern-Simons
terms. We show that Schrodinger (warped AdS_3) spacetimes exist as solutions to
a gravitational and Maxwell Chern-Simons theory with a cosmological constant.
Motivated by this, we look for warped AdS_3 or Schrodinger metrics as exact
solutions to a fully back-reacted theory containing Dirac fermions in three and
four dimensions. We work out the dynamical exponent in terms of the fermion
mass and generalize this result to arbitrary dimensions.Comment: 26 pages, v2: typos corrected, references added, minor change
Matrix dynamics of fuzzy spheres
We study the dynamics of fuzzy two-spheres in a matrix model which represents
string theory in the presence of RR flux. We analyze the stability of known
static solutions of such a theory which contain commuting matrices and SU(2)
representations. We find that irreducible as well as reducible representations
are stable. Since the latter are of higher energy, this stability poses a
puzzle. We resolve this puzzle by noting that reducible representations have
marginal directions corresponding to non-spherical deformations. We obtain new
static solutions by turning on these marginal deformations. These solutions now
have instability or tachyonic directions. We discuss condensation of these
tachyons which correspond to classical trajectories interpolating from
multiple, small fuzzy spheres to a single, large sphere. We briefly discuss
spatially independent configurations of a D3/D5 system described by the same
matrix model which now possesses a supergravity dual.Comment: 26 pages, 3 figures, uses JHEP.cls; (v2) references adde
- …
