170 research outputs found

    Large red cell-derived membrane particles are major contributors to hypercoagulability in sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is one of the most common inherited single gene disorders. Polymerisation of sickle hemoglobin results in erythrocytes that are inflexible and adherent, leading to coagulation, vascular and cellular activation and resultant blood vessel blockage. Previous studies have observed elevated numbers of red cell-derived particles (RCDP), also denoted extracellular vesicles, in SCD plasma. Here, imaging flow cytometry was used to quantify all RCDP in SCD plasma. A more heterogenous population of RCDP was observed than previously reported. Significantly, large right side-out red cell macrovesicles (MaV), 7 µm in diameter, were identified. Most RCDP were right side-out but a minor population of inside-out vesicles was also present. Electron micrographs confirmed the heterogenous nature of the RCDP detected. All MaV are decorated with prothrombotic phosphatidylserine (PS) and their removal from plasma lengthened clotting times by more than three-fold. Removal of all right side-out RCDP from SCD patient plasma samples resulted in a seven-fold increase in clotting time. These results indicate that MaV comprise a large area of prothrombotic membrane and are thus major contributors to hypercoagulation in SCD. Consequently, controlled removal of MaV and PS exposed RCDP from plasma could provide a novel therapy for managing this disease

    Hot and cold fibrosis: The role of serum biomarkers to assess immune mechanisms and ECM-cell interactions in human fibrosis

    Get PDF
    \ua9 2025 The Author(s)Fibrosis is a pathological condition characterised by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases. Recently, the concept of “hot” and “cold” fibrosis has emerged, referring to the immune status within fibrotic tissues and the nature of fibrogenic signalling. Hot fibrosis is characterised by active immune cell infiltration and inflammation, while cold fibrosis is associated with auto- and paracrine myofibroblast activation, immune cell exclusion and quiescence. In this article, we explore the relationship between hot and cold fibrosis, the role of various types of collagens and their biologically active fragments in modulating the immune system, and how serological ECM biomarkers can help improve our understanding of the disease-relevant interactions between immune and mesenchymal cells in fibrotic tissues. Additionally, we draw lessons from immuno-oncology research in solid tumours to shed light on potential strategies for fibrosis treatment and highlight the advantage of having a “hot fibrotic environment” to treat fibrosis by enhancing collagen degradation through modulation of the immune system

    ECM formation and degradation during fibrosis, repair, and regeneration

    Get PDF
    \ua9 The Author(s) 2025.Imperfect attempts at organ repair after repeated injury result in aberrant formation of extracellular matrix (ECM) and loss of tissue structure. This abnormal ECM goes from being a consequence of cellular dysregulation to become the backbone of a persistently fibrotic cell niche that compromises organic function and ultimately drives systemic disease. Here, we review our current understanding of the structure of the ECM, the mechanisms behind organ-specific fibrosis, resolution, healing and regeneration, as well as the development of anti-fibrotic strategies. We also discuss the design of biomarkers to investigate fibrosis pathophysiology, track fibrosis progression, systemic damage, and fibrosis resolution

    Serum levels of fibrogenesis biomarkers reveal distinct endotypes predictive of response to weight loss in advanced nonalcoholic fatty liver disease

    Get PDF
    \ua9 2023 Lippincott Williams and Wilkins. All rights reserved.Background: NAFLD is associated with activation of fibroblasts and hepatic fibrosis. Substantial patient heterogeneity exists, so it remains challenging to risk-stratify patients. We hypothesized that the amount of fibroblast activity, as assessed by circulating biomarkers of collagen formation, can define a "high-risk, high-fibrogenesis" patient endotype that exhibits greater fibroblast activity and potentially more progressive disease, and this endotype may be more amendable to dietary intervention. Methods: Patients with clinically confirmed advanced NAFLD were prescribed a very low-calorie diet (VLCD) intervention (800 kcal/d) to induce weight loss, achieved using total diet replacement. Serum markers of type III (PRO-C3) and IV collagen (PRO-C4) fibrogenesis were assessed at baseline every second week until the end of the VLCD, and 4 weeks post-VLCD and at 9 months follow-up. Results: Twenty-six subjects had a mean weight loss of 9.7% with VLCD. This was associated with significant improvements in liver biochemistry. When stratified by baseline PRO-C3 and PRO-C4 into distinct fibrosis endotypes, these predicted substantial differences in collagen fibrogenesis marker dynamics in response to VLCD. Patients in the high activity group (PRO-C3 11.4 ng/mL and/or PRO-C4 236.5 ng/mL) exhibited a marked reduction of collagen fibrogenesis, ranging from a 40%-55% decrease in PRO-C3 and PRO-C4, while fibrogenesis remained unchanged in the low activity group. The biochemical response to weight loss was substantially greater in patients a priori exhibiting a high fibroblast activity endotype in contrast to patients with low activity. Conclusions: Thus, the likelihood of treatment response may be predicted at baseline by quantification of fibrogenesis biomarkers

    Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine

    Get PDF
    Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals. In this cohort, 14 were non-secretor individuals and the remainders were secretors. The secretor status is defined by the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucus and other secretions. It is determined by fucosyltransferase 2 enzyme, encoded by the FUT2 gene. Non-functional enzyme resulting from a nonsense mutation in the FUT2 gene leads to the non-secretor phenotype. PCR-DGGE and qPCR methods were applied for the intestinal microbiota analysis. Principal component analysis of bifidobacterial DGGE profiles showed that the samples of non-secretor individuals formed a separate cluster within the secretor samples. Moreover, bifidobacterial diversity (p<0.0001), richness (p<0.0003), and abundance (p<0.05) were significantly reduced in the samples from the non-secretor individuals as compared with those from the secretor individuals. The non-secretor individuals lacked, or were rarely colonized by, several genotypes related to B. bifidum, B. adolescentis and B. catenulatum/pseudocatenulatum. In contrast to bifidobacteria, several bacterial genotypes were more common and the richness (p<0.04) of dominant bacteria as detected by PCR-DGGE was higher in the non-secretor individuals than in the secretor individuals. We showed that the diversity and composition of the human bifidobacterial population is strongly associated with the histo-blood group ABH secretor/non-secretor status, which consequently appears to be one of the host genetic determinants for the composition of the intestinal microbiota. This association can be explained by the difference between the secretor and non-secretor individuals in their expression of ABH and Lewis glycan epitopes in the mucosa

    One-step immunopurification and lectinochemical characterization of the Duffy atypical chemokine receptor from human erythrocytes

    Get PDF
    Duffy antigen/receptor for chemokines (DARC) is a glycosylated seven-transmembrane protein acting as a blood group antigen, a chemokine binding protein and a receptor for Plasmodium vivax malaria parasite. It is present on erythrocytes and endothelial cells of postcapillary venules. The N-terminal extracellular domain of the Duffy glycoprotein carries Fya/Fyb blood group antigens and Fy6 linear epitope recognized by monoclonal antibodies. Previously, we have shown that recombinant Duffy protein expressed in K562 cells has three N-linked oligosaccharide chains, which are mainly of complex-type. Here we report a one-step purification method of Duffy protein from human erythrocytes. DARC was extracted from erythrocyte membranes in the presence of 1% n-dodecyl-β-D-maltoside (DDM) and 0.05% cholesteryl hemisuccinate (CHS) and purified by affinity chromatography using immobilized anti-Fy6 2C3 mouse monoclonal antibody. Duffy glycoprotein was eluted from the column with synthetic DFEDVWN peptide containing epitope for 2C3 monoclonal antibody. In this single-step immunoaffinity purification method we obtained highly purified DARC, which migrates in SDS-polyacrylamide gel as a major diffuse band corresponding to a molecular mass of 40–47 kDa. In ELISA purified Duffy glycoprotein binds anti-Duffy antibodies recognizing epitopes located on distinct regions of the molecule. Results of circular dichroism measurement indicate that purified DARC has a high content of α-helical secondary structure typical for chemokine receptors. Analysis of DARC glycans performed by means of lectin blotting and glycosidase digestion suggests that native Duffy N-glycans are mostly triantennary complex-type, terminated with α2-3- and α2-6-linked sialic acid residues with bisecting GlcNAc and α1-6-linked fucose at the core

    Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

    Get PDF
    Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis

    Mollison's Blood Transfusion in Clinical Medicine

    No full text

    Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase

    Full text link
    The Yt blood group system comprises two antigens, Yta and Ytb. Human anti-Yta and human anti-Ytb immune precipitate a component of the same apparent molecular weight as acetylcholinesterase from radioiodinated erythrocytes of appropriate Yt phenotype. Immune precipitates obtained with anti-Yta and anti-Ytb contained acetylcholinesterase activity. In contrast, immune precipitates obtained with human anti-Gya and murine monoclonal anti-CD55, which identify other glycosylphosphatidylinositol- linked erythrocyte surface proteins, did not have acetylcholinesterase activity. Quantitative binding assays using murine monoclonal antiacetylcholinesterase antibodies (AE-1 and AE-2) gave 3,000 to 5,000 binding sites/cell for IgG and 7,000 to 10,000 sites/cell for Fab fragments. Endo F digestion of immune precipitates obtained with AE-1 and anti-Yta indicated that approximately 10% of the enzyme comprises N- glycans. These results indicate that the Yt antigens define an inherited polymorphism on erythrocyte acetylcholinesterase and that the recent assignment of the Yt blood group locus to the long arm of chromosome 7 (Zelinski et al, Genomics 11:165, 1991) provisionally identifies the position of the acetylcholinesterase gene.</jats:p
    corecore