136 research outputs found
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
Momentum asymmetries as CP violating observables
Three body decays can exhibit CP violation that arises from interfering
diagrams with different orderings of the final state particles. We construct
several momentum asymmetry observables that are accessible in a hadron collider
environment where some of the final state particles are not reconstructed and
not all the kinematic information can be extracted. We discuss the
complications that arise from the different possible production mechanisms of
the decaying particle. Examples involving heavy neutralino decays in
supersymmetric theories and heavy Majorana neutrino decays in Type-I seesaw
models are examined.Comment: 20 pages, 9 figures. Clarifying comments and one reference added,
matches published versio
The role of the right temporoparietal junction in perceptual conflict: detection or resolution?
The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict
Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists
Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation
Proteome Regulation during Olea europaea Fruit Development
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process
Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector
Direct searches for lepton flavour violation in decays of the Higgs and Z bosons with the ATLAS detector at the LHC are presented. The following three decays are considered: H→eτ, H→μτ, and Z→μτ. The searches are based on the data sample of proton–proton collisions collected by the ATLAS detector corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. No significant excess is observed, and upper limits on the lepton-flavour-violating branching ratios are set at the 95 % confidence level: Br (H→eτ)<1.04%, Br (H→μτ)<1.43%, and Br (Z→μτ)<1.69×10−5
Search for lepton-flavour-violating H → μτ decays of the Higgs boson with the ATLAS detector
A direct search for lepton-flavour-violating H → μτ decays of the recently discovered Higgs boson with the ATLAS detector at the LHC is presented. The analysis is performed in the H → μτ had channel, where τ had is a hadronically decaying τ -lepton. The search is based on the data sample of proton-proton collisions collected by the ATLAS experiment corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s √ =8 s=8 TeV. No statistically significant excess of data over the predicted background is observed. The observed (expected) 95% confidence-level upper limit on the branching fraction, Br(H → μτ ), is 1.85% (1.24%)
An Alternating GluN1-2-1-2 Subunit Arrangement in Mature NMDA Receptors
NMDA receptors (NMDARs) form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a “proximal” position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular) and functional (plasma-membrane inserted) pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors
Multiple Peptidoglycan Modification Networks Modulate Helicobacter pylori's Cell Shape, Motility, and Colonization Potential
Helical cell shape of the gastric pathogen Helicobacter pylori has been suggested to promote virulence through viscosity-dependent enhancement of swimming velocity. However, H. pylori csd1 mutants, which are curved but lack helical twist, show normal velocity in viscous polymer solutions and the reason for their deficiency in stomach colonization has remained unclear. Characterization of new rod shaped mutants identified Csd4, a DL-carboxypeptidase of peptidoglycan (PG) tripeptide monomers and Csd5, a putative scaffolding protein. Morphological and biochemical studies indicated Csd4 tripeptide cleavage and Csd1 crosslinking relaxation modify the PG sacculus through independent networks that coordinately generate helical shape. csd4 mutants show attenuation of stomach colonization, but no change in proinflammatory cytokine induction, despite four-fold higher levels of Nod1-agonist tripeptides in the PG sacculus. Motility analysis of similarly shaped mutants bearing distinct alterations in PG modifications revealed deficits associated with shape, but only in gel-like media and not viscous solutions. As gastric mucus displays viscoelastic gel-like properties, our results suggest enhanced penetration of the mucus barrier underlies the fitness advantage conferred by H. pylori's characteristic shape
Recommended from our members
The Belle II physics book
The Belle II detector will provide a major step forward in precision heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas. The sensitivity to a large number of key observables can be improved by about an order of magnitude compared to the current measurements, and up to two orders in very clean search measurements. This increase in statistical precision arises not only due to the increased luminosity, but also from improved detector efficiency and precision for many channels. Many of the most interesting observables tend to have very small theoretical uncertainties that will therefore not limit the physics reach. This book has presented many new ideas for measurements, both to elucidate the nature of current anomalies seen in flavor, and to search for new phenomena in a plethora of observables that will become accessible with the Belle II dataset. The simulation used for the studiesinthis book was state ofthe artat the time, though weare learning a lot more about the experiment during the commissioning period. The detector is in operation, and working spectacularly well
- …
