70 research outputs found

    Prolonged Antibiotic Treatment does not Prevent Intra-Abdominal Abscesses in Perforated Appendicitis

    Get PDF
    Contains fulltext : 89619.pdf (publisher's version ) (Open Access)BACKGROUND: Children with perforated appendicitis have a relatively high risk of intra-abdominal abscesses. There is no evidence that prolonged antibiotic treatment after surgery reduces intra-abdominal abscess formation. We compared two patient groups with perforated appendicitis with different postoperative antibiotic treatment protocols. METHODS: We retrospectively reviewed patients younger than age 18 years who underwent appendectomy for perforated appendicitis at two academic hospitals between January 1992 and December 2006. Perforation was diagnosed during surgery and confirmed during histopathological evaluation. Patients in hospital A received 5 days of antibiotics postoperatively, unless decided otherwise on clinical grounds. Patients in hospital B received antibiotics for 5 days, continued until serum C-reactive protein (CRP) was <20 mg/l. Univariate logistic regression analysis was performed on intention-to-treat basis. p < 0.05 was considered significant. RESULTS: A total of 149 children underwent appendectomy for perforated appendicitis: 68 in hospital A, and 81 in hospital B. As expected, the median (range) use of antibiotics was significantly different: 5 (range, 1-16) and 7 (range, 2-32) days, respectively (p < 0.0001). However, the incidence of postoperative intra-abdominal abscesses was similar (p = 0.95). Regression analysis demonstrated that sex (female) was a risk factor for abscess formation, whereas surgical technique and young age were not. CONCLUSIONS: Prolonged use of antibiotics after surgery for perforated appendicitis in children based on serum CRP does not reduce postoperative abscess formation.1 december 201

    Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    Get PDF
    BACKGROUND: Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. RESULTS: We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. CONCLUSION: Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly supported, bifurcating phylogeny, and a chronology of the divergences within the Delphinidae family. This highlights the benefits and potential application of large mitogenome datasets to resolve long-standing phylogenetic uncertainties

    Reproductive and Life History Parameters of Wild Female Macaca assamensis

    Get PDF
    Information on basic reproductive parameters and life-history traits is crucial for the understanding of primate evolution, ecology, social behavior, and reproductive strategies. Here, we report 4 yr of data on reproductive and life-history traits for wild female Assamese macaques (Macaca assamensis) at Phu Khieo Wildlife Sanctuary, northeastern Thailand. During 2 consecutive reproductive seasons, we investigated reproductive behavior and sexual swelling size in 16 females and collected 1832 fecal samples. Using enzyme immunoassays, we measured fecal estrogen and progesterone metabolites to assess ovarian activity and timing of ovulation and to ascertain conceptions and pregnancies. Timing of reproduction was strictly seasonal (births: April–July, 86% in April–June, 4 yr, n = 29; conceptions: October–February, 65% in December–January, 2 yr, n = 17). Females showed no cyclic ovarian activity outside the mating season and conceived in their first or second cycle (mean: 1.2 cycles to conception, n = 13). Gestation length was on average 164.2 d (range: 158–170, n = 10), and females had their first infant at an age of 5 yr (n = 4). Interbirth intervals were bimodally distributed, with females giving birth on average every 13.9 or 23.2 mo. Shorter interbirth intervals were linked to early parturition within the birth season. Most females displayed subcaudal sexual swellings which, however, did not reliably indicate female reproductive status or fertility. Overall, our results fall within the range of findings reported for other macaque species. These results thus add to the growing body of information available for wild macaques, facilitating comparative studies for a better understanding of interspecific differences in social and reproductive patterns

    Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?

    Get PDF
    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity

    Universal Artifacts Affect the Branching of Phylogenetic Trees, Not Universal Scaling Laws

    Get PDF
    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny?In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods.All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees.There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1
    corecore