577 research outputs found
Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions
Background
Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals.
Results
Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall.
Conclusions
The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions
Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity
In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity
ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library
Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.Peer reviewe
Recommended from our members
Environmental enrichment reduces signs of boredom in caged mink
Animals housed in impoverished cages are often labelled 'bored'. They have also been called 'apathetic' or 'depressed', particularly when profoundly inactive. However, these terms are rarely operationally defined and validated. As a negative state caused by under-stimulation, boredom should increase interest in stimuli of all kinds. Apathy (lack of interest), by contrast, should manifest as decreased interest in all stimuli, while anhedonia (loss of pleasure, a depressive symptom) should specifically decrease interest in normally rewarding stimuli. We tested the hypotheses that mink, a model carnivore, experience more boredom, depression-like apathy, or anhedonia in non-enriched (NE) cages than in complex, enriched (E) cages. We exposed 29 subjects (13 E, 16 NE) to ten stimuli categorized a priori as aversive (e.g. air puffs), rewarding (e.g. evoking chasing) or ambiguous/neutral (e.g. candles). Interest in stimuli was assessed via latencies to contact, contact durations, and durations oriented to stimuli. NE mink contacted all stimuli faster (P = 0.003) than E mink, and spent longer oriented to/in contact with them, albeit only significantly so for ambiguous ones (treatment*type P<0.013). With stimulus category removed from statistical models, interest in all stimuli was consistently higher among NE mink (P<0.0001 for all measures). NE mink also consumed more food rewards (P = 0.037). Finally, we investigated whether lying down while awake and stereotypic behaviour (both increased by NE housing) predicted these responses. Lying awake positively co-varied with certain measures of increased exploration. In contrast, stereotypic 'scrabbling' or locomotion (e.g. pacing) did not. Overall, NE mink showed no evidence of apathy or depression, but instead a heightened investigation of diverse stimuli consistent with boredom. This state was potentially indicated by spending much time lying still but awake (although this result requires replication). Boredom can thus be operationalized and assessed empirically in non-human animals. It can also be reduced by environmental enrichment
Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti
Novel X-Ray Imaging Method for Evaluating Defect Evolution in Ceramic Tapes
Ceramic tape casting is critical to the electronics industry for manufacturing a wide range of components including piezoelectric actuators, MLC capacitors, and substrates for VLSI and LSI chips [1–3]. Recent regulatory changes, led by the Environmental Protection Agency concerning hazardous chemicals used in ceramic tape-casting, have renewed interest in the development of environmentally-friendly modifications to this process. In turn, this has increased interest in developing a better, fundamental understanding of how microstructural defects form and evolve during the sequence of processing steps associated with tape casting. In order to form more reliable electronic components, there is a need to develop a better, basic understanding of how to eliminate these defects by optimizing critical processing variables
Impact of measurement error on testing genetic association with quantitative traits
10.1371/journal.pone.0087044PLoS ONE91-POLN
Symptom Dimensions in OCD: Item-Level Factor Analysis and Heritability Estimates
To reduce the phenotypic heterogeneity of obsessive-compulsive disorder (OCD) for genetic, clinical and translational studies, numerous factor analyses of the Yale-Brown Obsessive Compulsive Scale checklist (YBOCS-CL) have been conducted. Results of these analyses have been inconsistent, likely as a consequence of small sample sizes and variable methodologies. Furthermore, data concerning the heritability of the factors are limited. Item and category-level factor analyses of YBOCS-CL items from 1224 OCD subjects were followed by heritability analyses in 52 OCD-affected multigenerational families. Item-level analyses indicated that a five factor model: (1) taboo, (2) contamination/cleaning, (3) doubts, (4) superstitions/rituals, and (5) symmetry/hoarding provided the best fit, followed by a one-factor solution. All 5 factors as well as the one-factor solution were found to be heritable. Bivariate analyses indicated that the taboo and doubts factor, and the contamination and symmetry/hoarding factor share genetic influences. Contamination and symmetry/hoarding show shared genetic variance with symptom severity. Nearly all factors showed shared environmental variance with each other and with symptom severity. These results support the utility of both OCD diagnosis and symptom dimensions in genetic research and clinical contexts. Both shared and unique genetic influences underlie susceptibility to OCD and its symptom dimensions.Obsessive Compulsive FoundationTourette Syndrome AssociationAnxiety Disorders Association of AmericaAmerican Academy of Child and Adolescent Psychiatr
Rilonacept (IL-1 TRAP) for treatment of colchicine resistant familial mediterranean fever (FMF): a randomized, multicenter double-blinded, alternating treatment trial
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
