520 research outputs found
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease
Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour
Influence of leaf trichome type, and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
Host selection by adult greenhouse whitefly Trialeurodes vaporariorum (Westwood) was assessed on two pelargonium plant cultivars, Pelargonium x domesticum (regal) and P. x hortorum (zonal) using Petri dish bioassay chambers in choice and no-choice tests. Plant characteristics which could influence the oviposition preference of the whitely i.e., type and density of trichomes on the abaxial leaf surface was determined. A strong host preference was observed for the regal compared to the zonal pelargonium by the adult whiteflies. In no-choice tests, adults laid a significantly higher number of eggs on regal than on zonal leaves both at 24 and 48 hours post-exposure, respectively. After exposure to the adult whitefly, the number of
42 eggs in choice tests were similar between cultivars at 24 hours, but were higher for regal at 48 and 72 hours. The total number of trichomes (sng: straight non-glandular + sg: straight glandular) per 0.50 cm2 44 was significantly less on regal (Mean ± SE sng + sg; 43.1 ± 1.5) than on zonal leaves (60.5 ± 1.2); however, the sng trichomes were significantly higher on the zonal (49.4 ± 0.96) than the regal leaves (28.6 ± 1.00). Also, the number of sg trichomes was slightly higher for the regal cultivar leaves compared to the zonal, being 14.4 ± 1.2 and 11.2 ± 0.5, respectively. Results suggest that the trichome density, type and the ability to express glandular exudates can affect adult whitefly Pelargonium cultivar preference and plays an important role in their host plant selection for oviposition
Proteolysis of the endothelial cell protein C receptor by neutrophil proteinase 3
BACKGROUND: The endothelial cell protein C receptor (EPCR) presents protein C to the thrombin:thrombomodulin complex on the endothelium of large vessels, and enhances the generation of activated protein C (APC) and activation of protease-activated receptor-1. A previous report has demonstrated binding of soluble (s) EPCR to activated neutrophils via surface proteinase 3 (PR3). METHODS: We now report further characterization of this interaction. Activated neutrophils and purified PR3 both decrease endothelial cell (EC) surface EPCR, suggestive of its proteolysis. RESULTS: When added to purified recombinant sEPCR, PR3 produced multiple cleavages, with early products including 20 kDa N-terminal and C-terminal (after Lys(176)) fragments. The binding of active site blocked PR3 to sEPCR was studied by surface plasmon resonance. Estimates of the K(D) of 18.5–102 nm were obtained with heterogeneous binding, suggestive of more than a single interaction site. CONCLUSIONS: This work demonstrates PR3 binding to and proteolysis of EPCR and suggests a mechanism by which anticoagulant and cell protective pathways can be down-regulated during inflammation
Laser writing of coherent colour centres in diamond
Optically active point defects in crystals have gained widespread attention as photonic systems that can find use in quantum information technologies [1,2]. However challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single nitrogen-vacancy (NV) centres in diamond using laser writing [3]. The use of aberration correction in the writing optics allows precise positioning of vacancies within the diamond crystal, and subsequent annealing produces single NV centres with up to 45% success probability, within about 200 nm of the desired position. Selected NV centres fabricated by this method display stable, coherent optical transitions at cryogenic temperatures, a pre-requisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies
Recommended from our members
Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse
Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming
Stretching the spines of gymnasts: a review
Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken
A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis
BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF
transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport,
chronic lung infections, inflammation and eventual respiratory failure. With the exception of the
small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is
suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect.
The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy
formulation through preclinical and clinical development.
OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of
1 year in patients with CF.
DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome
complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward
Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1).
Allocation was blinded by masking nebuliser chambers.
SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm,
version 4.6 database.
PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1)
between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group
(≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene
therapy (78 randomised).
INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at
28 (±5)-day intervals over 1 year.
MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1
over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety
measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural
disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a
validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory
markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene
deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and
lower airway potential difference.
RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI)
0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital
capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching
statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective
of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4%
(95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more
mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI.
The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No
difference in treatment-attributable AEs was seen between the placebo and active groups.
CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with
an improvement in lung function, other clinically relevant parameters and bronchial CFTR function,
compared with placebo.
LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by
detectable improvement in patients’ quality of life.
FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency,
the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of
repeated administration.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867
HCV genotypes are differently prone to the development of resistance to linear and macrocyclic protease inhibitors
Because of the extreme genetic variability of hepatitis C virus (HCV), we analyzed whether specific HCV-genotypes are differently prone to develop resistance to linear and macrocyclic protease-inhibitors (PIs)
- …
