404 research outputs found

    By hook or by crook? Morphometry, competition and cooperation in rodent sperm

    Get PDF
    Background Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm. Methodology/Principal Findings Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse. Conclusions Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Reducing Viral Load Measurements to Once a Year in Patients on Stable, Virologically Suppressive Cart Regimen: Findings from the Australian HIV Observational Database.

    Full text link
    Reducing viral-load measurements to annual testing in virologically suppressed patients increases the estimated mean time those patients remain on a failing regimen by 6 months. This translates to an increase in the proportion of patients with at least one Thymidine Analogue Mutation from 10% to 32% over one year

    A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling

    Get PDF
    Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms

    Supportive and symptomatic management of amyotrophic lateral sclerosis

    Get PDF
    The main aims in the care of individuals with amyotrophic lateral sclerosis (ALS) are to minimize morbidity and maximize quality of life. Although no cure exists for ALS, supportive and symptomatic care provided by a specialist multidisciplinary team can improve survival. The basis for supportive management is shifting from expert consensus guidelines towards an evidence-based approach, which encourages the use of effective treatments and could reduce the risk of harm caused by ineffective or unsafe interventions. For example, respiratory support using noninvasive ventilation has been demonstrated to improve survival and quality of life, whereas evidence supporting other respiratory interventions is insufficient. Increasing evidence implicates a causal role for metabolic dysfunction in ALS, suggesting that optimizing nutrition could improve quality of life and survival. The high incidence of cognitive dysfunction and its impact on prognosis is increasingly recognized, although evidence for effective treatments is lacking. A variety of strategies are used to manage the other physical and psychological symptoms, the majority of which have yet to be thoroughly evaluated. The need for specialist palliative care throughout the disease is increasingly recognized. This Review describes the current approaches to symptomatic and supportive care in ALS and outlines the current guidance and evidence for these strategies

    Advances in quantum metrology

    Get PDF
    The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections

    Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis

    Get PDF
    Background: Multinucleated giant cells have been noticed in diverse arthritic conditions since their first description in rheumatoid synovium. However, their role in the pathogenesis of osteoarthritis (OA) or rheumatoid arthritis (RA) still remains broadly unknown. We aimed to study the presence and characteristics of multinucleated giant cells (MGC) both in synovium and in subchondral bone tissues of patients with OA or RA. Methods: Knee synovial and subchondral bone samples were from age-matched patients undergoing total joint replacement for OA or RA, or non-arthritic post mortem (PM) controls. OA synovium was stratified by histological inflammation grade using index tissue sections. Synovitis was assessed by Krenn score. Histological studies employed specific antibodies against macrophage markers or cathepsin K, or TRAP enzymatic assay. Results: Inflamed OA and RA synovia displayed more multinucleated giant cells than did non-inflamed OA and PM synovia. There was a significant association between MGC numbers and synovitis severity. A TRAP negative/cathepsin K negative Langhans-like subtype was predominant in OA, whereas both Langhans-like and TRAP-positive/ cathepsin K negative foreign-body-like subtypes were most commonly detected in RA. Plasma-like and foam-like subtypes also were observed in OA and RA synovia, and the latter was found surrounding adipocytes. TRAP positive/ cathepsin K positive osteoclasts were only identified adjacent to subchondral bone surfaces. TRAP positive osteoclasts were significantly increased in subchondral bone in OA and RA compared to PM controls. Conclusions: Multinucleated giant cells are associated with synovitis severity, and subchondral osteoclast numbers are increased in OA, as well as in RA. Further research targeting multinucleated giant cells is warranted to elucidate their contributions to the symptoms and joint damage associated with arthritis

    A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds

    Get PDF
    In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons

    Neural Correlates of Threat Perception: Neural Equivalence of Conspecific and Heterospecific Mobbing Calls Is Learned

    Get PDF
    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise [1]–[2]. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators [3]. Mobbing calls produced in response to smaller, higher-threat predators contain more “D” notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators [4]. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned

    Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry

    Get PDF
    The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches
    corecore