169 research outputs found
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
Exploring the Universe with Metal-Poor Stars
The early chemical evolution of the Galaxy and the Universe is vital to our
understanding of a host of astrophysical phenomena. Since the most metal-poor
Galactic stars (with metallicities down to [Fe/H]\sim-5.5) are relics from the
high-redshift Universe, they probe the chemical and dynamical conditions of the
Milky Way and the origin and evolution of the elements through nucleosynthesis.
They also provide constraints on the nature of the first stars, their
associated supernovae and initial mass function, and early star and galaxy
formation. The Milky Way's dwarf satellites contain a large fraction (~30%) of
the known most metal-poor stars that have chemical abundances that closely
resemble those of equivalent halo stars. This suggests that chemical evolution
may be universal, at least at early times, and that it is driven by massive,
energetic SNe. Some of these surviving, ultra-faint systems may show the
signature of just one such PopIII star; they may even be surviving first
galaxies. Early analogs of the surviving dwarfs may thus have played an
important role in the assembly of the old Galactic halo whose formation can now
be studied with stellar chemistry. Following the cosmic evolution of small
halos in simulations of structure formation enables tracing the cosmological
origin of the most metal-poor stars in the halo and dwarf galaxies. Together
with future observations and additional modeling, many of these issues,
including the reionization history of the Milky Way, may be constrained this
way. The chapter concludes with an outlook about upcoming observational
challenges and ways forward is to use metal-poor stars to constrain theoretical
studies.Comment: 34 pages, 11 figures. Book chapter to appear in "The First Galaxies -
Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V.
Bromm, B. Mobasher, T. Wiklin
Aquaporin water channels in the nervous system.
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage
Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation
The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript
Generation of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs
Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i) DC activation/maturation milieu (TNF-α +/- IFN-α) and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865), (ii) CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672)-pulsed DCs, prepared without IFN-α, (iii) association between circulating T regulatory cells (Tregs) and clinical responses
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Strong Evidence of a Combination Polymorphism of the Tyrosine Kinase 2 Gene and the Signal Transducer and Activator of Transcription 3 Gene as a DNA-Based Biomarker for Susceptibility to Crohn’s Disease in the Japanese Population
OBJECTIVE: An association between susceptibility to inflammatory bowel disease (IBD) and polymorphisms of both the tyrosine kinase 2 gene (TYK2) and the signal transducer and activator of transcription 3 gene (STAT3) was examined in a Japanese population in order to identify the genetic determinants of IBD. METHODS: The study subjects comprised 112 patients with ulcerative colitis, 83 patients with Crohn's disease (CD), and 200 healthy control subjects. Seven tag single-nucleotide polymorphisms (SNPs) in TYK2 and STAT3 were detected by PCR-restriction fragment length polymorphism. RESULTS: The frequencies of a C allele and its homozygous C/C genotype at rs2293152 SNP in STAT3 in CD patients were significantly higher than those in control subjects (P = 0.007 and P = 0.001, respectively). Furthermore, out of four haplotypes composed of the two tag SNPs (rs280519 and rs2304256) in TYK2, the frequencies of a Hap 1 haplotype and its homozygous Hap 1/Hap1 diplotype were significantly higher in CD patients in comparison to those in control subjects (P = 0.023 and P = 0.024, respectively). In addition, the presence of both the C/C genotype at rs2293152 SNP in STAT3 and the Hap 1/Hap 1 diplotype of TYK2 independently contributes to the pathogenesis of CD and significantly increases the odds ratio to 7.486 for CD (P = 0.0008). CONCLUSION: TYK2 and STAT3 are genetic determinants of CD in the Japanese population. This combination polymorphism may be useful as a new genetic biomarker for the identification of high-risk individuals susceptible to CD
Nodavirus colonizes and replicates in the testis of gilthead seabream and European sea bass modulating its immune and reproductive functions
Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted
through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to
be transmitted through the gonad, the virus should colonize and replicate inside some cell
types of this tissue and avoid the subsequent immune response locally. However, whether
NNV colonizes the gonad, the cell types that are infected, and how the immune response in
the gonad is regulated has never been studied. We have demonstrated for the first time the
presence and localization of NNV into the testis after an experimental infection in the European
sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very
susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the
testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by
immunohistochemistry, suggesting that males might also transmit the virus. In addition, we
were able to isolate infective particles from the testis of both species demonstrating that
NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues
sampled was discarded by completely fish bleeding, furthermore the in situ PCR and
immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover,
we also determined how the immune and reproductive functions are affected comparing
the effects in the testis with those found in the brain, the main target tissue of the virus.
Interestingly, NNV triggered the immune response in the European sea bass but not in the
gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol
and 11-ketotestosterone production and the potential sensitivity of brain and testis to
these hormones, whereas there is no disruption of testicular functions according to several
reproductive parameters. Moreover, we have also studied the NNV infection of the testis in
vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to
those observed upon in vivo infections in most of the casesMINECO and FEDER (AGL2010-20801-C02-01; AGL2010-20801-C02-02; AGL2013-43588-P); Fundación Séneca (04538/GERM/06)Versión del editor4,411
Vivax malaria in Mauritania includes infection of a Duffy-negative individual
<p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>is present because this surface antigen is thought to act as a key receptor for this parasite. In the present study, Duffy blood group genotyping was performed in febrile uninfected and <it>P. vivax</it>-infected patients living in the city of Nouakchott, Mauritania.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>was identified by real-time PCR. The Duffy blood group genotypes were determined by standard PCR followed by sequencing of the promoter region and exon 2 of the Duffy gene in 277 febrile individuals. Fisher's exact test was performed in order to assess the significance of variables.</p> <p>Results</p> <p>In the Moorish population, a high frequency of the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was observed in uninfected individuals (27.8%), whereas no <it>P. vivax</it>-infected patient had this genotype. This was followed by a high level of <it>FYA/FYB</it>, <it>FYB/FYB</it>, <it>FYB/FYB<sup>ES </sup></it>and <it>FYA/FYB<sup>ES </sup></it>genotype frequencies, both in the <it>P. vivax</it>-infected and uninfected patients. In other ethnic groups (Poular, Soninke, Wolof), only the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was found in uninfected patients, whereas the <it>FYA/FYB<sup>ES </sup></it>genotype was observed in two <it>P. vivax</it>-infected patients. In addition, one patient belonging to the Wolof ethnic group presented the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype and was infected by <it>P. vivax</it>.</p> <p>Conclusions</p> <p>This study presents the Duffy blood group polymorphisms in Nouakchott City and demonstrates that in Mauritania, <it>P. vivax </it>is able to infect Duffy-negative patients. Further studies are necessary to identify the process that enables this Duffy-independent <it>P. vivax </it>invasion of human red blood cells.</p
Elastin Peptides Signaling Relies on Neuraminidase-1-Dependent Lactosylceramide Generation
The sialidase activity of neuraminidase-1 (Neu-1) is responsible for ERK 1/2 pathway activation following binding of elastin peptide on the elastin receptor complex. In this work, we demonstrate that the receptor and lipid rafts colocalize at the plasma membrane. We also show that the disruption of these microdomains as well as their depletion in glycolipids blocks the receptor signaling. Following elastin peptide treatment, the cellular GM3 level decreases while lactosylceramide (LacCer) content increases consistently with a GM3/LacCer conversion. The use of lactose or Neu-1 siRNA blocks this process suggesting that the elastin receptor complex is responsible for this lipid conversion. Flow cytometry analysis confirms this elastin peptide-driven LacCer generation. Further, the use of a monoclonal anti-GM3 blocking antibody shows that GM3 is required for signaling. In conclusion, our data strongly suggest that Neu-1-dependent GM3/LacCer conversion is the key event leading to signaling by the elastin receptor complex. As a consequence, we propose that LacCer is an early messenger for this receptor
- …
